Consider steady, incompressible, laminar flow of a Newtonian fluid in an infinitely long round pipe of diameter D or radius R = D/2 inclined at angle a. There is no applied pressure gradient (@P/x = 0). Instead, the fluid flows down the pipe due to gravity alone. We adopt the coordinate system shown, with x down the axis of the pipe. Derive an expression for the x- component of velocity u as a function of radius r and the other parameters of the problem. Calculate the volume flow rate and average axial velocity through the pipe. 102 α Pipe wall Fluid: p. R X
Consider steady, incompressible, laminar flow of a Newtonian fluid in an infinitely long round pipe of diameter D or radius R = D/2 inclined at angle a. There is no applied pressure gradient (@P/x = 0). Instead, the fluid flows down the pipe due to gravity alone. We adopt the coordinate system shown, with x down the axis of the pipe. Derive an expression for the x- component of velocity u as a function of radius r and the other parameters of the problem. Calculate the volume flow rate and average axial velocity through the pipe. 102 α Pipe wall Fluid: p. R X
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Topic Video
Question
![Consider steady, incompressible, laminar flow of a Newtonian fluid in an
infinitely long round pipe of diameter D or radius R = D/2 inclined at angle
a. There is no applied pressure gradient (@P/x = 0). Instead, the fluid
flows down the pipe due to gravity alone. We adopt the coordinate system
shown, with x down the axis of the pipe. Derive an expression for the x-
component of velocity u as a function of radius r and the other parameters
of the problem. Calculate the volume flow rate and average axial velocity
through the pipe.
10₂
α
Pipe wall
Fluid: p. p
R](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1f1c68a1-c113-41cc-b0cf-42f2666e5687%2F78913615-b798-4cc1-94f4-350c1df065ad%2Fl0l8wnv_processed.png&w=3840&q=75)
Transcribed Image Text:Consider steady, incompressible, laminar flow of a Newtonian fluid in an
infinitely long round pipe of diameter D or radius R = D/2 inclined at angle
a. There is no applied pressure gradient (@P/x = 0). Instead, the fluid
flows down the pipe due to gravity alone. We adopt the coordinate system
shown, with x down the axis of the pipe. Derive an expression for the x-
component of velocity u as a function of radius r and the other parameters
of the problem. Calculate the volume flow rate and average axial velocity
through the pipe.
10₂
α
Pipe wall
Fluid: p. p
R
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Step 1: Determine the given variables:
VIEWStep 2: Write the incompressible continuity equation in cylindrical coordinates:
VIEWStep 3: Take the x-component of incompressible Navier-stokes equation:
VIEWStep 4: Find the volume flow rate through the pipe:
VIEWStep 5: Find the average axial velocity through the pipe:
VIEWSolution
VIEWTrending now
This is a popular solution!
Step by step
Solved in 6 steps with 12 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY