Consider matrix, 1-3 2-3 A= 2 0 3 1-2-4 LI --T 3-1 3 9 -9 7 -6 -6 Let us convect A in reduced row echelon form ANTI-3 2-3 333 -15 13 -3-3-9 0 6-3 9 0-10 5 6 AN 10 1/2 3/2 9/27 1/2 อว 18 0100 -000 AN 3/2 -12-12 0 1/2 3/2 9/2 1 -1/2 3/2 1/2 0 -12-12 000-000-0 0-000000 ANTIO 1/20 1-1/20 3 60000-00 -000-000 100 by R2-2R1, R3+2R1, R₂-R, --by R4-R2, R₁+1 R₂ R3+ 10 R2 then 16 R2 by Rs Ry 18 I 1/2 0 -1/2 Thus 1st, 2nd, 4th 18 by R3 then R1-R3, R2-3/2R3 --by to R4 then R1-3R4, R2-R4, R3-R4 & 5th column contains pivet. so only { U, V2, V4, Vs) are linearly independent. So Span(s) Span VN2 N3 N4 N5] 1 = span [V1, V2, V4, US} so basis of span(s) is, {V1, V2, V4, V5]

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
please use the results in the image attached to describe the difference between showing a set is a
vector space verses show a set (subset) is a subspace of a given vector space.
Consider matrix,
1-3 2-3
A=
2
0
3
1-2-4
LI
--T
3-1
3
9
-9
7
-6 -6
Let us convect A in reduced row echelon form
ANTI-3
2-3
333
-15 13
-3-3-9
0
6-3
9
0-10
5
6
AN 10 1/2 3/2 9/27
1/2
อว
18
0100
-000
AN
3/2
-12-12
0 1/2 3/2 9/2
1 -1/2 3/2 1/2
0
-12-12
000-000-0
0-000000
ANTIO 1/20
1-1/20
3
60000-00
-000-000
100
by R2-2R1, R3+2R1, R₂-R,
--by R4-R2, R₁+1 R₂
R3+ 10 R2
then 16 R2
by Rs Ry
18
I
1/2 0
-1/2
Thus 1st, 2nd, 4th
18
by R3 then R1-R3,
R2-3/2R3
--by to R4 then R1-3R4,
R2-R4, R3-R4
& 5th column contains pivet.
so only { U, V2, V4, Vs) are linearly independent.
So
Span(s) Span VN2 N3 N4 N5]
1
= span [V1, V2, V4, US}
so basis of span(s) is, {V1, V2, V4, V5]
Transcribed Image Text:Consider matrix, 1-3 2-3 A= 2 0 3 1-2-4 LI --T 3-1 3 9 -9 7 -6 -6 Let us convect A in reduced row echelon form ANTI-3 2-3 333 -15 13 -3-3-9 0 6-3 9 0-10 5 6 AN 10 1/2 3/2 9/27 1/2 อว 18 0100 -000 AN 3/2 -12-12 0 1/2 3/2 9/2 1 -1/2 3/2 1/2 0 -12-12 000-000-0 0-000000 ANTIO 1/20 1-1/20 3 60000-00 -000-000 100 by R2-2R1, R3+2R1, R₂-R, --by R4-R2, R₁+1 R₂ R3+ 10 R2 then 16 R2 by Rs Ry 18 I 1/2 0 -1/2 Thus 1st, 2nd, 4th 18 by R3 then R1-R3, R2-3/2R3 --by to R4 then R1-3R4, R2-R4, R3-R4 & 5th column contains pivet. so only { U, V2, V4, Vs) are linearly independent. So Span(s) Span VN2 N3 N4 N5] 1 = span [V1, V2, V4, US} so basis of span(s) is, {V1, V2, V4, V5]
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning