Consider irrotational flow past a stationary sphere of radius R located at the origin. In the limit r→ ∞, the velocity field v = = U2, as in Fig. 8-6 in the book. (a) Calculate the velocity field v assuming potential flow given by v = Vo(r, 0, 0), where the potential can be assumed to be independent of the azimuthal coordinate and v=0. Here, since Ә rde ə V₁ = - U cos and ve Ər for large r/R, look for solutions of the form = f(r) cos 0. Assume a no-penetration boundary condition at the surface of the sphere. (b) Calculate the pressure P and the drag force due to pressure. -U sin 0
Consider irrotational flow past a stationary sphere of radius R located at the origin. In the limit r→ ∞, the velocity field v = = U2, as in Fig. 8-6 in the book. (a) Calculate the velocity field v assuming potential flow given by v = Vo(r, 0, 0), where the potential can be assumed to be independent of the azimuthal coordinate and v=0. Here, since Ә rde ə V₁ = - U cos and ve Ər for large r/R, look for solutions of the form = f(r) cos 0. Assume a no-penetration boundary condition at the surface of the sphere. (b) Calculate the pressure P and the drag force due to pressure. -U sin 0
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Step 1: Write the given data and what is to find
VIEWStep 2: Determine the general solution for the laplace equation:
VIEWStep 3: Determine the values of the coefficients A and B:
VIEWStep 4: Determine the velocity distribution expression:
VIEWStep 5: Determine the velocity distribution profile in r and theta directions:
VIEWStep 6: Determine the pressure at the surface:
VIEWSolution
VIEWTrending now
This is a popular solution!
Step by step
Solved in 7 steps with 59 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY