Consider f(x) = x² - 16 X 4 X 3.9 3.99 3.999 3.9999 f(x) 7.9 X 4.1 4.01 4.001 4.0001 f(x) 8.1 Looking at the values, we can estimate that lim f(x) = = x →4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Consider the Function \( f(x) = \frac{x^2 - 16}{x - 4} \)**

This expression involves a rational function. Let's examine how \( f(x) \) behaves as \( x \) approaches 4.

**Table Analysis**

The table displays values of \( x \) and corresponding values of \( f(x) \) as \( x \) approaches 4 from both sides (values less than 4 and more than 4).

- **For x approaching 4 from the left (values less than 4):**
  - \( x = 3.9 \), \( f(x) = 7.9 \)
  - \( x = 3.99 \), \( f(x) = \) [Not provided]
  - \( x = 3.999 \), \( f(x) = \) [Not provided]
  - \( x = 3.9999 \), \( f(x) = \) [Not provided]

- **For x approaching 4 from the right (values greater than 4):**
  - \( x = 4.1 \), \( f(x) = 8.1 \)
  - \( x = 4.01 \), \( f(x) = \) [Not provided]
  - \( x = 4.001 \), \( f(x) = \) [Not provided]
  - \( x = 4.0001 \), \( f(x) = \) [Not provided]

**Estimating the Limit**

As we examine these values, it suggests the behavior of the function near the point \( x = 4 \). Observing both the left and right approaches will help us determine:

\[
\lim_{x \to 4} f(x) = 
\]

The information encourages us to fill out the missing \( f(x) \) values and establish the limit based on visible trends.
Transcribed Image Text:**Consider the Function \( f(x) = \frac{x^2 - 16}{x - 4} \)** This expression involves a rational function. Let's examine how \( f(x) \) behaves as \( x \) approaches 4. **Table Analysis** The table displays values of \( x \) and corresponding values of \( f(x) \) as \( x \) approaches 4 from both sides (values less than 4 and more than 4). - **For x approaching 4 from the left (values less than 4):** - \( x = 3.9 \), \( f(x) = 7.9 \) - \( x = 3.99 \), \( f(x) = \) [Not provided] - \( x = 3.999 \), \( f(x) = \) [Not provided] - \( x = 3.9999 \), \( f(x) = \) [Not provided] - **For x approaching 4 from the right (values greater than 4):** - \( x = 4.1 \), \( f(x) = 8.1 \) - \( x = 4.01 \), \( f(x) = \) [Not provided] - \( x = 4.001 \), \( f(x) = \) [Not provided] - \( x = 4.0001 \), \( f(x) = \) [Not provided] **Estimating the Limit** As we examine these values, it suggests the behavior of the function near the point \( x = 4 \). Observing both the left and right approaches will help us determine: \[ \lim_{x \to 4} f(x) = \] The information encourages us to fill out the missing \( f(x) \) values and establish the limit based on visible trends.
Let \( f(x) = 
\begin{cases} 
4 - x - x^2 & \text{if } x \leq 4 \\
2x - 24 & \text{if } x > 4 
\end{cases} \)

Calculate the following limits. Enter "DNE" if the limit does not exist.

\[
\lim_{x \to 4^-} f(x) = \underline{\hspace{2cm}}
\]

\[
\lim_{x \to 4^+} f(x) = \underline{\hspace{2cm}}
\]

\[
\lim_{x \to 4} f(x) = \underline{\hspace{2cm}}
\]
Transcribed Image Text:Let \( f(x) = \begin{cases} 4 - x - x^2 & \text{if } x \leq 4 \\ 2x - 24 & \text{if } x > 4 \end{cases} \) Calculate the following limits. Enter "DNE" if the limit does not exist. \[ \lim_{x \to 4^-} f(x) = \underline{\hspace{2cm}} \] \[ \lim_{x \to 4^+} f(x) = \underline{\hspace{2cm}} \] \[ \lim_{x \to 4} f(x) = \underline{\hspace{2cm}} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 17 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning