Consider f, a function such as f(2) = 1, f'(2) = 2, f''(2) = 3 and f'''(2) = 4 and that verifies: -3 <  f(x) < 34 0 <  f'(x) < 12 -8 < f''(x) < 9 -6 < f'''(x) < 5    for all x ∈ [0,4].  Find the second degree Taylor polynomial, T2(x), of f at a = 2, then use T2(x) to approximate f(1) and determine a bound on the approximation error. Give a bound on the approximation error f(x) ≈ T2(x) that is valid for all x in the interval [0,4].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider f, a function such as f(2) = 1, f'(2) = 2, f''(2) = 3 and f'''(2) = 4 and that verifies:

-3 <  f(x) < 34

0 <  f'(x) < 12

-8 < f''(x) < 9

-6 < f'''(x) < 5    for all x ∈ [0,4]. 


Find the second degree Taylor polynomial, T2(x), of f at a = 2, then use T2(x) to approximate f(1) and determine a bound on the approximation error.

Give a bound on the approximation error f(x) ≈ T2(x) that is valid for all x in the interval [0,4]. 

-------

I was able to find T2(x) = 1 + 2(x-2) + 3/2(x-2)2  and the approximation f(1) ≈ 1/2, but I don't understand how to find the approximation error bounds? Are we supposed to use Taylor's inequality definition? 

33.) Soit f une fonction telle que f(2) = 1, f'(2)= 2, f"(2)=3
et f"(2)= 4, et qui vérifie
–3< f(x)<34 0<f'(x)<12
-8< f"(x)<9_ -6< f(x)<5
lexpression
pour tout x E [0, 4].
Transcribed Image Text:33.) Soit f une fonction telle que f(2) = 1, f'(2)= 2, f"(2)=3 et f"(2)= 4, et qui vérifie –3< f(x)<34 0<f'(x)<12 -8< f"(x)<9_ -6< f(x)<5 lexpression pour tout x E [0, 4].
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,