Consider a weighted, directed graph G with n vertices and m edges that have integer weights. A graph walk is a sequence of not-necessarily-distinct vertices vi, v2, --- , Vk such that each pair of consecutive vertices vi, Vi+1 are connected by an edge. This is similar to a path, except a walk can have repeated vertices and edges. The length of a walk in a weighted graph is the sum of the weights of the edges in the walk. Let s, t be given vertices in the graph, and L be a positive integer. We are interested counting the number of walks from s to t of length exactly L. Assume all the edge weights are positive. Describe an algorithm that computes the number of graph walks from sto t of length exactly L in O((n+ m)L) time. Prove the correctness and analyze the running time. (Hint: Dynamic Programming solution)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
Consider a weighted, directed graph G with n vertices and m edges that have
integer weights. A graph walk is a sequence of not-necessarily-distinct vertices v1,
v2, ... , Vk such that each pair of consecutive vertices Vi, Vi+1 are connected by an
edge. This is similar to a path, except a walk can have repeated vertices and edges.
The length of a walk in a weighted graph is the sum of the weights of the edges in
the walk. Let s, t be given vertices in the graph, and L be a positive integer. We are
interested counting the number of walks from s to t of length exactly L.
Assume all the edge weights are positive. Describe an algorithm that computes
the number of graph walks from s to t of length exactly L in O((n+ m)L) time. Prove
the correctness and analyze the running time. (Hint: Dynamic Programming
solution)
Transcribed Image Text:Consider a weighted, directed graph G with n vertices and m edges that have integer weights. A graph walk is a sequence of not-necessarily-distinct vertices v1, v2, ... , Vk such that each pair of consecutive vertices Vi, Vi+1 are connected by an edge. This is similar to a path, except a walk can have repeated vertices and edges. The length of a walk in a weighted graph is the sum of the weights of the edges in the walk. Let s, t be given vertices in the graph, and L be a positive integer. We are interested counting the number of walks from s to t of length exactly L. Assume all the edge weights are positive. Describe an algorithm that computes the number of graph walks from s to t of length exactly L in O((n+ m)L) time. Prove the correctness and analyze the running time. (Hint: Dynamic Programming solution)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Sets
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education