a) Construct the Precedence Graph (not containing any redundant or transitive edges) Note: This is a directed-acyclic graph showing which processes must complete before another process starts. This graph may provide a partial ordering on the processes. There must not be any redundant or transitive edges (extra edges which show precedence described elsewhere). For example: P1->P2->P3 establishes an ordering. It would be wrong to list P1->P3 as an edge, as there is a transitive relationship over "->" b) Determine if the system above is always determinate. If not, add to any necessary elements to make it determinate. NEVER REMOVE ITEMS FROM A PRECEDENCE RELATION YOU ARE GIVEN. Note: If the system is determinate, then indicate why you come to this conclusion. If you feel that it is not, then indicate what changes are needed to make it so. Consider a system of six processes. Associated with the system are 6 memory cells. The domain and range for each process is given in the following table: Process Pi Domain D (Pi) Range R (Pi) P1 M1, M2 M3 P2 M3 M₁ P3 M4, M5 M6 P4 M6 M1 P5 M2 M5 P6 M5, Mi M2 In addition, you are given the following precedence relation: ⇒= {(P1, P2), (P2, P3), (P1, P3), (P2, P4), (P3, P4), (P1, P5), (P5, P6)} In this notation (P1, P2) may be read P₁ → P2 which indicates that P₁ must complete before P2.
a) Construct the Precedence Graph (not containing any redundant or transitive edges) Note: This is a directed-acyclic graph showing which processes must complete before another process starts. This graph may provide a partial ordering on the processes. There must not be any redundant or transitive edges (extra edges which show precedence described elsewhere). For example: P1->P2->P3 establishes an ordering. It would be wrong to list P1->P3 as an edge, as there is a transitive relationship over "->" b) Determine if the system above is always determinate. If not, add to any necessary elements to make it determinate. NEVER REMOVE ITEMS FROM A PRECEDENCE RELATION YOU ARE GIVEN. Note: If the system is determinate, then indicate why you come to this conclusion. If you feel that it is not, then indicate what changes are needed to make it so. Consider a system of six processes. Associated with the system are 6 memory cells. The domain and range for each process is given in the following table: Process Pi Domain D (Pi) Range R (Pi) P1 M1, M2 M3 P2 M3 M₁ P3 M4, M5 M6 P4 M6 M1 P5 M2 M5 P6 M5, Mi M2 In addition, you are given the following precedence relation: ⇒= {(P1, P2), (P2, P3), (P1, P3), (P2, P4), (P3, P4), (P1, P5), (P5, P6)} In this notation (P1, P2) may be read P₁ → P2 which indicates that P₁ must complete before P2.
Related questions
Question
please help with parts a and b with steps/explanation!
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images