Consider a low-speed open-circuit subsonic wind tunnel. The tunnel is turned on, and the pressure difference between the inlet (the settling chamber) and the test section is read as a height difference of 10 cm on a U-tube mercury manometer. (The density of liquid mercury is 1.36 × 104 kg/m3.) Assume that a Pitot tube is inserted into the test-section flow of the wind tunnel. The tunnel test section is completely sealed from the outside ambient pressure. Calculate the total pressure measured by the Pitot tube, assuming the static pressure at the tunnel inlet is atmospheric. Given that A2/A1 = 1/12. (Round the final answer to two decimal places.) The total pressure measured by the Pitot tube is × 105 N/m2.
Consider a low-speed open-circuit subsonic wind tunnel. The tunnel is turned on, and the pressure difference between the inlet (the settling chamber) and the test section is read as a height difference of 10 cm on a U-tube mercury manometer. (The density of liquid mercury is 1.36 × 104 kg/m3.) Assume that a Pitot tube is inserted into the test-section flow of the wind tunnel. The tunnel test section is completely sealed from the outside ambient pressure. Calculate the total pressure measured by the Pitot tube, assuming the static pressure at the tunnel inlet is atmospheric. Given that A2/A1 = 1/12. (Round the final answer to two decimal places.)
The total pressure measured by the Pitot tube is × 105 N/m2.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images