Consider a homogeneous goods industry where two firms operate and the linear demand is given by p(y1 + y2 ) = a - b(y1 + y2 ), where p is the market price, and y1 (y2) is the output produced by firm 1 (2). There are no costs for firm 1 or firm 2. A. What is the industry output? B. Suppose the inverse demand curve in a market is D(p) =a-bp, where D(p) is the quantity demanded and p is the market price. Firm 1 is the leader and has a cost function c1(y1)=cy1 while firm 2 is the follower with a cost function c2(y2 )= y^22/2 (image of function attached). Firm 1 sets its price to maximise its profit. Firm 1 correctly forecasts that the follower takes the price leader’s chosen price as given (price taker) and chooses output so as to maximise its own profit. Write down the profit function of the follower. Calculate the profit maximising quantity that the follower selects given the leader’s chosen price p (i.e., calculate the follower’s supply curve S(p)). Interpret the solution to the profit maximising problem.
Consider a homogeneous goods industry where two firms operate and the linear
A. What is the industry output?
B. Suppose the inverse demand curve in a market is D(p) =a-bp, where D(p) is the quantity demanded and p is the market price. Firm 1 is the leader and has a cost function c1(y1)=cy1 while firm 2 is the follower with a cost function c2(y2 )= y^22/2 (image of function attached). Firm 1 sets its price to maximise its profit. Firm 1 correctly
Calculate the profit maximising quantity that the follower selects given the leader’s chosen price p (i.e., calculate the follower’s supply curve S(p)). Interpret the solution to the profit maximising problem.


Step by step
Solved in 4 steps with 2 images









