Consider a constant vector B e R*. Is the (projection) function F(ā)=| a-B à - dot products – where äeR“ a linear transformation? Justify, always.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Consider a constant vector \(\vec{b} \in \mathbb{R}^4\). Is the (projection) function 

\[
F(\vec{a}) = \left(\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}\right) \vec{a}
\]

where \(\vec{a} \in \mathbb{R}^4\) a linear transformation? Justify, always.

**Explanation:**

In this problem, you are tasked with determining whether the function \(F(\vec{a})\), which projects vector \(\vec{b}\) onto vector \(\vec{a}\), is a linear transformation.

To do so, we must verify whether \(F\) satisfies the properties of a linear transformation:

1. **Additivity:** \(F(\vec{a}_1 + \vec{a}_2) = F(\vec{a}_1) + F(\vec{a}_2)\)
2. **Homogeneity:** \(F(c \cdot \vec{a}) = c \cdot F(\vec{a})\) for any scalar \(c\).

Analyzing these properties using the given formula will help you determine the linearity of this function.
Transcribed Image Text:**Problem Statement:** Consider a constant vector \(\vec{b} \in \mathbb{R}^4\). Is the (projection) function \[ F(\vec{a}) = \left(\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}\right) \vec{a} \] where \(\vec{a} \in \mathbb{R}^4\) a linear transformation? Justify, always. **Explanation:** In this problem, you are tasked with determining whether the function \(F(\vec{a})\), which projects vector \(\vec{b}\) onto vector \(\vec{a}\), is a linear transformation. To do so, we must verify whether \(F\) satisfies the properties of a linear transformation: 1. **Additivity:** \(F(\vec{a}_1 + \vec{a}_2) = F(\vec{a}_1) + F(\vec{a}_2)\) 2. **Homogeneity:** \(F(c \cdot \vec{a}) = c \cdot F(\vec{a})\) for any scalar \(c\). Analyzing these properties using the given formula will help you determine the linearity of this function.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,