Consider a connected undirected graph G=(V,E) in which every edge e∈E has a distinct and nonnegative cost. Let T be an MST and P a shortest path from some vertex s to some other vertex t. Now suppose the cost of every edge e of G is increased by 1 and becomes ce+1. Call this new graph G′. Which of the following is true about G′ ? a) T must be an MST and P must be a shortest s - t path. b) T must be an MST but P may not be a shortest s - t path. c) T may not be an MST but P must be a shortest s - t path. d) T may not be an MST and P may not be a shortest s−t path. Pls use Kruskal's algorithm to reason about the MST.
Consider a connected undirected graph G=(V,E) in which every edge e∈E has a distinct and nonnegative cost. Let T be an MST and P a shortest path from some vertex s to some other vertex t. Now suppose the cost of every edge e of G is increased by 1 and becomes ce+1. Call this new graph G′. Which of the following is true about G′ ? a) T must be an MST and P must be a shortest s - t path. b) T must be an MST but P may not be a shortest s - t path. c) T may not be an MST but P must be a shortest s - t path. d) T may not be an MST and P may not be a shortest s−t path. Pls use Kruskal's algorithm to reason about the MST.
Related questions
Question
Consider a connected undirected graph G=(V,E) in which every edge e∈E has a distinct and nonnegative cost. Let T be an MST and P a shortest path from some vertex s to some other vertex t. Now suppose the cost of every edge e of G is increased by 1 and becomes ce+1. Call this new graph G′. Which of the following is true about G′ ? a) T must be an MST and P must be a shortest s - t path. b) T must be an MST but P may not be a shortest s - t path. c) T may not be an MST but P must be a shortest s - t path. d) T may not be an MST and P may not be a shortest s−t path.
Pls use Kruskal's algorithm to reason about the MST.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, data-structures-and-algorithms and related others by exploring similar questions and additional content below.