COMPUTER PROBLEM-SOLVING IN ENGINEERING AND COMPUTER SCIENCE X In this exercise you will use least-squares curve fitting to develop two equations to model the data given. Using these equations, we will predict the function values for two inputs and evaluate the prediction made by each of the curves and linear interpolation. PART A 2 8 PROBLEM-SOLVING EXERCISE #3 ESTIMATING AND PREDICTING UNKNOWNS 16 11 20 17 25 20 28 26 29 31 32 EGR 1400 WINTER 2023 36 34 41 36 46 38 Using the 8 non-shaded values above, find ao and as for the least squares linear regression. We will save the shaded values for our test data, that is, data points that are known but we will not include in the information used to make a representative curve. We will use these points to see how close our curve fit is to predicting actual values that were not used to derive the curve. Compute the overall squared-error. Write the completed polynomial. PART B Using the 8 non-shaded values from part A, find ao, ai, and a2 for a parabolic least squares regression (polynomial of degree 2). Use MS Excel to solve for these coefficients. Compute the overall squared-error. Write the completed polynomial. Include a printout of your Excel spreadsheet. PART C On two separate graphs, plot the non-shaded data points and show the resulting curves from Part A and Part B; a separate graph for each curve. Use graph paper.

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
COMPUTER PROBLEM-SOLVING IN
ENGINEERING AND COMPUTER SCIENCE
X
2
Y 8
In this exercise you will use least-squares curve fitting to develop two equations to model the data
given. Using these equations, we will predict the function values for two inputs and evaluate the
prediction made by each of the curves and linear interpolation.
PART A
PROBLEM-SOLVING EXERCISE #3
ESTIMATING AND PREDICTING UNKNOWNS
16
X linear
17
36
11
20
17
25
interpolation fit
20
28
linear parabolic
fit
26
29
31
32
Using the 8 non-shaded values above, find ao and ai for the least squares linear regression. We
will save the shaded values for our test data, that is, data points that are known but we will not
include in the information used to make a representative curve. We will use these points to see
how close our curve fit is to predicting actual values that were not used to derive the curve.
Compute the overall squared-error. Write the completed polynomial.
PART B
Using the 8 non-shaded values from part A, find ao, ai, and a2 for a parabolic least squares
regression (polynomial of degree 2). Use MS Excel to solve for these coefficients. Compute the
overall squared-error. Write the completed polynomial. Include a printout of your Excel
spreadsheet.
PART C
On two separate graphs, plot the non-shaded data points and show the resulting curves from Part
A and Part B; a separate graph for each curve. Use graph paper.
PART D
Fill in the following test table:
Y values
EGR 1400
WINTER 2023
36
41
34 36
Absolute Error: |Actual-Predicted
linear linear parabolic
fit
interpolation fit
46
38
25
34
Results
actual best best
value method
Transcribed Image Text:COMPUTER PROBLEM-SOLVING IN ENGINEERING AND COMPUTER SCIENCE X 2 Y 8 In this exercise you will use least-squares curve fitting to develop two equations to model the data given. Using these equations, we will predict the function values for two inputs and evaluate the prediction made by each of the curves and linear interpolation. PART A PROBLEM-SOLVING EXERCISE #3 ESTIMATING AND PREDICTING UNKNOWNS 16 X linear 17 36 11 20 17 25 interpolation fit 20 28 linear parabolic fit 26 29 31 32 Using the 8 non-shaded values above, find ao and ai for the least squares linear regression. We will save the shaded values for our test data, that is, data points that are known but we will not include in the information used to make a representative curve. We will use these points to see how close our curve fit is to predicting actual values that were not used to derive the curve. Compute the overall squared-error. Write the completed polynomial. PART B Using the 8 non-shaded values from part A, find ao, ai, and a2 for a parabolic least squares regression (polynomial of degree 2). Use MS Excel to solve for these coefficients. Compute the overall squared-error. Write the completed polynomial. Include a printout of your Excel spreadsheet. PART C On two separate graphs, plot the non-shaded data points and show the resulting curves from Part A and Part B; a separate graph for each curve. Use graph paper. PART D Fill in the following test table: Y values EGR 1400 WINTER 2023 36 41 34 36 Absolute Error: |Actual-Predicted linear linear parabolic fit interpolation fit 46 38 25 34 Results actual best best value method
Expert Solution
Step 1

Part A.

The python code for the part A is given below with self-explanatory embedded comments:

import numpy as np
from scipy.optimize import curve_fit
from scipy.interpolate import interp1d

# Define the functions to fit
def linear_func(x, a, b):
    return a*x + b

def quadratic_func(x, a, b, c):
    return a*x**2 + b*x + c

# Fit the cubic function to the data
def cubic_func(x, a, b, c, d):
    return a*x**3 + b*x**2 + c*x + d

# Define the train and test data
X_train = np.array([2, 7, 11, 20, 26, 31, 41, 46])
Y_train = np.array([8, 16, 20, 28, 29, 32, 36, 38])
X_test = np.array([17, 36])
Y_test = np.array([25, 34])

# Fit the linear, quadratic and cubic functions to the data
fit_linear, _ = curve_fit(linear_func, X_train, Y_train)
print('Linear function parameters:', fit_linear)

fit_quadratic, _ = curve_fit(quadratic_func, X_train, Y_train)
print('Quadratic function parameters:', fit_quadratic)

fit_cubic, _ = curve_fit(cubic_func, X_train, Y_train)
print('Cubic function parameters:', fit_cubic)

# Evaluate the fitted functions on the test data
Y_pred_linear = linear_func(X_test, *fit_linear)
Y_pred_quadratic = quadratic_func(X_test, *fit_quadratic)
Y_pred_cubic = cubic_func(X_test, *fit_cubic)

# Calculate the squared-errors for each method
se_linear = np.sum((Y_pred_linear - Y_test)**2)
se_quadratic = np.sum((Y_pred_quadratic - Y_test)**2)
se_cubic = np.sum((Y_pred_cubic - Y_test)**2)

# Print the result
print("\n")
print(f"Squared-error for linear function: {se_linear}")
print(f"Squared-error for quadratic function: {se_quadratic}")
print(f"Squared-error for cubic function: {se_cubic}")

 

# Print the completed polynomials
print("\n")
print(f"Linear function: {fit_linear[0]:.5f}x + {fit_linear[1]:.5f}")
print(f"Quadratic function: {fit_quadratic[0]:.5f}x^2 + {fit_quadratic[1]:.5f}x + {fit_quadratic[2]:.5f}")
print(f"Cubic function: {fit_cubic[0]:.5f}x^3 + {fit_cubic[1]:.5f}x^2 + {fit_cubic[2]:.5f}x + {fit_cubic[3]:.5f}")

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 6 images

Blurred answer
Knowledge Booster
Computational Systems
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education