Compute the fourth derivative of cos(x+1) - ln(x²+4) + x²²+1 with respect to x. Also, compute the integral of the original function on the interval [1,3]. Do not retype the full expression to be integrated.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
This is in Mathematica in cal 2
Compute the fourth derivative of
cos(x + 1) − ln(x² + 4) + x²²+1
with respect to z. Also, compute the integral of the original function on the interval [1, 3]. Do not
retype the full expression to be integrated.
Transcribed Image Text:Compute the fourth derivative of cos(x + 1) − ln(x² + 4) + x²²+1 with respect to z. Also, compute the integral of the original function on the interval [1, 3]. Do not retype the full expression to be integrated.
Expert Solution
Step 1

Sol:-

First part:-

Fourth Derivative of given function:-

ddxcosx+1-lnx2+4+xex2+1=ddxcosx+1-ddxlnx2+4+ddxxex2+1=-sinx+1-2xx2+4+ex2+1+2ex2+1x2Again differentiate:-ddx-sinx+1-2xx2+4+ex2+1+2ex2+1x2=-ddxsinx+1-ddx2xx2+4+ddxex2+1+ddx2ex2+1x2=-cosx+1-2-x2+4x2+42+ex2+1·2x+22ex2+1x3+2ex2+1xAgain differentiate:-ddxcosx+1-2-x2+4x2+42+ex2+1·2x+22ex2+1x3+2ex2+1x=ddxcosx+1-ddx2-x2+4x2+42+ddxex2+1·2x+ddx22ex2+1x3+2ex2+1x-sinx+1--4x-x2+12x2+43+22ex2+1x2+ex2+1+24ex2+1x4+10ex2+1x2+2ex2+1Simplify:-=8ex2+1x4+24ex2+1x2-sinx+1+4x-x2+12x2+43+6ex2+1Again differentiate:-ddx8ex2+1x4+24ex2+1x2-sinx+1+4x-x2+12x2+43+6ex2+1=ddx8ex2+1x4+ddx24ex2+1x2-ddxsinx+1+ddx4x-x2+12x2+43+ddx6ex2+1=82ex2+1x5+4ex2+1x3+242ex2+1x3+2ex2+1x-cosx+1+12x4-24x2+16x2+44+12ex2+1x=16ex2+1x5+80ex2+1x3+60ex2+1x-cosx+1+12x4-24x2+16x2+44Hence Fourth derivative is given by:-16ex2+1x5+80ex2+1x3+60ex2+1x-cosx+1+12x4-24x2+16x2+44

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,