Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Concept explainers
Equations and Inequations
Equations and inequalities describe the relationship between two mathematical expressions.
Linear Functions
A linear function can just be a constant, or it can be the constant multiplied with the variable like x or y. If the variables are of the form, x2, x1/2 or y2 it is not linear. The exponent over the variables should always be 1.
Question
![**Problem: Compute the exact value**
\[ \int_{2}^{\infty} 2^{-x} \, dx \]
There are no graphs or diagrams associated with this problem. The goal is to compute the exact value of the improper integral from 2 to infinity of the function \(2^{-x}\).
### Solution Outline:
1. **Identify the Integrand**: The integrand is \(2^{-x}\), which can be written as \(e^{-x \ln(2)}\) using the change of base formula.
2. **Perform the Integration**:
\[
\int 2^{-x} \, dx = \int e^{-x \ln(2)} \, dx
\]
Let \(k = \ln(2)\), then the integral becomes:
\[
\int e^{-kx} \, dx
\]
3. **Integrate the Exponential Function**:
The integral of \(e^{-kx}\) with respect to \(x\) is:
\[
\int e^{-kx} \, dx = -\frac{1}{k} e^{-kx} + C
\]
Substituting \(k = \ln(2)\):
\[
\int 2^{-x} \, dx = -\frac{1}{\ln(2)} 2^{-x} + C
\]
4. **Evaluate the Definite Integral**:
Evaluate the definite integral from 2 to infinity:
\[
\left[ -\frac{1}{\ln(2)} 2^{-x} \right]_{2}^{\infty}
\]
5. **Evaluate the Limits**:
\[
= \left( \lim_{{t \to \infty}} \left( -\frac{1}{\ln(2)} 2^{-t} \right) \right) - \left( -\frac{1}{\ln(2)} 2^{-2} \right)
\]
As \(t \to \infty\), \(2^{-t} \to 0\):
\[
= 0 - \left( -\frac{1}{\ln(2)} 2^{-2} \right)
\]
Simplify the expression:
\[](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6c8732dd-627e-495c-a245-47d9f524edaa%2F27afcf13-df07-4143-a23a-f149bba20805%2Fni15c4_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem: Compute the exact value**
\[ \int_{2}^{\infty} 2^{-x} \, dx \]
There are no graphs or diagrams associated with this problem. The goal is to compute the exact value of the improper integral from 2 to infinity of the function \(2^{-x}\).
### Solution Outline:
1. **Identify the Integrand**: The integrand is \(2^{-x}\), which can be written as \(e^{-x \ln(2)}\) using the change of base formula.
2. **Perform the Integration**:
\[
\int 2^{-x} \, dx = \int e^{-x \ln(2)} \, dx
\]
Let \(k = \ln(2)\), then the integral becomes:
\[
\int e^{-kx} \, dx
\]
3. **Integrate the Exponential Function**:
The integral of \(e^{-kx}\) with respect to \(x\) is:
\[
\int e^{-kx} \, dx = -\frac{1}{k} e^{-kx} + C
\]
Substituting \(k = \ln(2)\):
\[
\int 2^{-x} \, dx = -\frac{1}{\ln(2)} 2^{-x} + C
\]
4. **Evaluate the Definite Integral**:
Evaluate the definite integral from 2 to infinity:
\[
\left[ -\frac{1}{\ln(2)} 2^{-x} \right]_{2}^{\infty}
\]
5. **Evaluate the Limits**:
\[
= \left( \lim_{{t \to \infty}} \left( -\frac{1}{\ln(2)} 2^{-t} \right) \right) - \left( -\frac{1}{\ln(2)} 2^{-2} \right)
\]
As \(t \to \infty\), \(2^{-t} \to 0\):
\[
= 0 - \left( -\frac{1}{\ln(2)} 2^{-2} \right)
\]
Simplify the expression:
\[
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning