Compute line integral of F(x,y) = (2x² – 3,₁²³)^² + (2x +34²) ↑ с over the following C F-dr SCF ¾ ç (40) C₁ 16 C₂ 16 th 22 201 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Compute line integral of
F(x,y) = (2x² - 3²³²) ₁² + (2x +34²) Ĵ
^
over the following C
yy=2x+1
G
(१०)
15750
S.F.dr
C₁
³√ F. d² + √ F. d² + √ E.dr² = 24
G
(2,2)
(2,0)
32
~-girl 8117-X811
y = n(t) = y₂ + (y-yot = 2-at
2
ナ
(₁ : (x, y) =(2, 2), (x, y₁) = (-2,0)
x = g(t) = x₂ + (x₁ - x₂ ³²
=2-4t
4 = h(t) = y₂ + (y_y't = 2-at
16
C₁ = T (t) = (₁ + 0₁, 25+.52
A
G₂₁: F(t) = 2₁ + tj ust≤2
L
y
41
7₁ (t) = (2-4+) ₁ + (2-2+) }, 08651
2575 2 = ¹ { ( 1+ 7 ² ) + + 17 = (4) ² /
Transcribed Image Text:Compute line integral of F(x,y) = (2x² - 3²³²) ₁² + (2x +34²) Ĵ ^ over the following C yy=2x+1 G (१०) 15750 S.F.dr C₁ ³√ F. d² + √ F. d² + √ E.dr² = 24 G (2,2) (2,0) 32 ~-girl 8117-X811 y = n(t) = y₂ + (y-yot = 2-at 2 ナ (₁ : (x, y) =(2, 2), (x, y₁) = (-2,0) x = g(t) = x₂ + (x₁ - x₂ ³² =2-4t 4 = h(t) = y₂ + (y_y't = 2-at 16 C₁ = T (t) = (₁ + 0₁, 25+.52 A G₂₁: F(t) = 2₁ + tj ust≤2 L y 41 7₁ (t) = (2-4+) ₁ + (2-2+) }, 08651 2575 2 = ¹ { ( 1+ 7 ² ) + + 17 = (4) ² /
Expert Solution
steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,