Computation 2: use the 4th order Runge-Kutta method to solve the differential equation du = (y-x-1) ²³ +2 to find an approximate solution. _y (0)=1; Find y (1) with h = 0.2. Find %.ET. Exact answer : y tan x + x + 1 = tan 1+1+1 = 3.557401 = 3.56

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Write in clean white paper....

Computation 2:
use the 4th order Runge-Kutta method to solve the differential
(y-x-1)² +2 to find an approximate solution.
dy
equation
_y (0)=1 Find y(1) with h = 0.2. Find %.E.T.
Exact answer :
y = fan x + x + 1 = tan 1 + 1 + 1 = 3.557401 = 3.56
All answer must be correct to 2 decimal places.
|xn|yn|m₁ = h [f(xn₁yN | m₂ =h [ f(x + y + + 1 m₂ = h [f(xn + ²/² ₁ 4 ₁ + = 7²)
= 0.2 [Y₁-Xn-1)² +2] = 0.2 [((y₁ + 2/2) - (^n + 0.1)-1)=0.2 [((yn+2)-(xn +0.1) −1)²
0
2
3
4
5
=
DATE.
12
+2
m₁ =h [f(xn+h) yn + m₂)] yn + ₁ = y₁= = (m₁ +2m₂ +2m₂ + my)
= 0.2 [((yn + m₂) - (xn +0.2)-1)²
+2
Transcribed Image Text:Computation 2: use the 4th order Runge-Kutta method to solve the differential (y-x-1)² +2 to find an approximate solution. dy equation _y (0)=1 Find y(1) with h = 0.2. Find %.E.T. Exact answer : y = fan x + x + 1 = tan 1 + 1 + 1 = 3.557401 = 3.56 All answer must be correct to 2 decimal places. |xn|yn|m₁ = h [f(xn₁yN | m₂ =h [ f(x + y + + 1 m₂ = h [f(xn + ²/² ₁ 4 ₁ + = 7²) = 0.2 [Y₁-Xn-1)² +2] = 0.2 [((y₁ + 2/2) - (^n + 0.1)-1)=0.2 [((yn+2)-(xn +0.1) −1)² 0 2 3 4 5 = DATE. 12 +2 m₁ =h [f(xn+h) yn + m₂)] yn + ₁ = y₁= = (m₁ +2m₂ +2m₂ + my) = 0.2 [((yn + m₂) - (xn +0.2)-1)² +2
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,