Complete the proof. m B. Given: AB = BC m is the I bisector of AB. n is the I bisector of CD. Prove: AP = DQ Statements Reasons 1. Given 1. AB = BC, m is the L bisector of AB, and n is the I bisector of CD. 2. а. 2. AB = CD 3. Definition of 3. АР - -AB bisector 4. b. 4. DQ = CD 2 5. AP = DQ 5. Substitution 6. C. 6. d.

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter9: Systems Of Equations And Inequalities
Section9.1: Systems Of Equations
Problem 61E
icon
Related questions
Question
# Geometric Proof

## Complete the Proof

### Diagram Explanation:
The diagram consists of two sets of intersecting lines. In the first set, line \( m \) is the perpendicular bisector of segment \( \overline{AB} \) at point \( P \). In the second set, line \( n \) is the perpendicular bisector of segment \( \overline{CD} \) at point \( Q \).

### Given:
- \( \overline{AB} \cong \overline{BC} \)
- \( m \) is the perpendicular bisector of \( \overline{AB} \).
- \( n \) is the perpendicular bisector of \( \overline{CD} \).

### Prove:
- \( \overline{AP} \cong \overline{DQ} \)

### Proof Steps:
| **Statements**                                                | **Reasons**               |
|---------------------------------------------------------------|---------------------------|
| 1. \( \overline{AB} \cong \overline{BC}, m \) is the perpendicular bisector of \( \overline{AB}, \) and \( n \) is the perpendicular bisector of \( \overline{CD} \). | 1. Given                   |
| 2. \( AB = CD \)                                              | 2. a.                     |
| 3. \( AP = \frac{1}{2} AB \)                                  | 3. Definition of bisector |
| 4. \( DQ = \frac{1}{2} CD \)                                  | 4. b.                     |
| 5. \( AP = DQ \)                                              | 5. Substitution           |
| 6. c.                                                         | 6. d.                     |
Transcribed Image Text:# Geometric Proof ## Complete the Proof ### Diagram Explanation: The diagram consists of two sets of intersecting lines. In the first set, line \( m \) is the perpendicular bisector of segment \( \overline{AB} \) at point \( P \). In the second set, line \( n \) is the perpendicular bisector of segment \( \overline{CD} \) at point \( Q \). ### Given: - \( \overline{AB} \cong \overline{BC} \) - \( m \) is the perpendicular bisector of \( \overline{AB} \). - \( n \) is the perpendicular bisector of \( \overline{CD} \). ### Prove: - \( \overline{AP} \cong \overline{DQ} \) ### Proof Steps: | **Statements** | **Reasons** | |---------------------------------------------------------------|---------------------------| | 1. \( \overline{AB} \cong \overline{BC}, m \) is the perpendicular bisector of \( \overline{AB}, \) and \( n \) is the perpendicular bisector of \( \overline{CD} \). | 1. Given | | 2. \( AB = CD \) | 2. a. | | 3. \( AP = \frac{1}{2} AB \) | 3. Definition of bisector | | 4. \( DQ = \frac{1}{2} CD \) | 4. b. | | 5. \( AP = DQ \) | 5. Substitution | | 6. c. | 6. d. |
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Holt Mcdougal Larson Pre-algebra: Student Edition…
Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL
College Algebra
College Algebra
Algebra
ISBN:
9781337282291
Author:
Ron Larson
Publisher:
Cengage Learning