Complete the proof of the theorem. This result is called the Baire Category Theorem because it creates two categories of size for subsets in a metric space. A set of “first category” is one that can be written as a countable union of nowhere-dense sets. These are the small, intuitively thin subsets of a metric space. We now see that if our metric space is complete, then it is necessarily of “second category,” meaning it cannot be written as a countable union of nowhere-dense sets. Given a subset A of a complete metric space X, showing that A is of first category is a mathematically precise way of demonstrating that A constitutes a very minor portion of the set X. The term “meager” is often used to mean a set of first category.With the stage set, we now outline the argument that continuous functionsthat are differentiable at even one point of [0,1] form a meager subset of the metric space C[0, 1].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Complete the proof of the theorem. This result is called the Baire Category Theorem because it creates two categories of size for subsets in a metric space. A set of “first category” is one that can be written as a countable union of nowhere-dense sets. These are the small, intuitively thin subsets of a metric space. We now see that if our metric space is complete, then it is necessarily of “second category,” meaning it cannot be written as a countable union of nowhere-dense sets. Given a subset A of a complete metric space X, showing that A is of first category is a mathematically precise way of demonstrating that A constitutes a very minor portion of the set X. The term “meager” is often used to mean a set of first category.
With the stage set, we now outline the argument that continuous functions
that are differentiable at even one point of [0,1] form a meager subset of the metric space C[0, 1].

Expert Solution
Introduction

The Baire Category Theorem is a result that classifies subsets of a metric space into two categories based on their size. A subset of "first category" is one that can be written as a countable union of nowhere-dense sets, and is considered to be small or thin. A subset of "second category" is one that cannot be written as a countable union of nowhere-dense sets and is considered to be large or thick. If a metric space is complete, then it is necessarily of second category. The Baire Category Theorem is used to show that certain subsets of a complete metric space, such as the set of continuous functions that are differentiable at even one point of the interval [0,1], are of first category and therefore constitute a very small portion of the space.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Complexity
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,