Compare the magnitudes of the equilibrant vectors measured from the experiment with those obtained from the graphical and component methods. Example: A: 200 g 60° above +x axis B: 300 g 45° above -x axis C: 400 g 30° below -x-axis A = A cos a = 1.96 N x cos 60° = 0.98 N B,= B cos b = 2.94 N x cos 135º = -2.08 N C, C cos g = 3.92 N x cos 210°= -3.39 N R₂-A₂+ B₂+ C₂ = -4.49 N A, A sin a = 1.96 N x sin 60° = 1.70 N B, B sin b = 2.94 N x sin 135º = 2.08 N C, C sin g = 3.92 N x sin 210° = -1.96 N Ry= A + By + Cy = 1.82 N Questions: I: (a) A: 200 g along +x axis B: 100 g 45° above -x axis A₂ = A cos a = B₂= B cos b = R₂-A₂+ B₂ = A₂ = A sin a = B, =B sin b = R₂ = A + B₂ = R=(R₂ R₂):__ Quadrant R = √ (R₂²+R₂²) = Direction:q = tan¹ [R, /R] (c) A: 100 g along -y axis B: 200 g along -x axis Ax= A cos a = B₂B cos b = R₂-A, + B₂ = A = A sin a = B,= B sin b = R₁ = A + B₂ = R=(R R.): Quadrant R = √(R₂²+R₂²) = Direction:q=tan [R, /R.]

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%
II: (a) A: 150 g 60° along +y axis
B: 200 g 45° above -x axis
C: 100 g 30° below -x axis
A₂ = A cos a =
B, =B cos b =
C₁ = C cos g =
R₂-A₂+B+C₂
A, = A sin a =
B, =B sin b =
C₂ = C sin g =
R₂ = A + B + C =
R=(R₁, R₂):
R= √ (R₂²+R²) =
Quadrant
Direction:q=tan [R, R.]
1
(c) A: 200 g along +y axis
B: 100 g 60° above +x axis
C: 200 g 45° below +x axis
A₁ = A cos a =
B=B cos b =
C₁=C cos g =
R₂-A₂+B+C₂
A₁ = A sin a =
B, =B sin b =
C₁ = C sin g =
R= A + B + C₂ =
R=(R₁, R₂): _
R=√(R₂²+R₂²) =
Direction:q=tan¹ [R₂/R₂] =
Quadrant
Transcribed Image Text:II: (a) A: 150 g 60° along +y axis B: 200 g 45° above -x axis C: 100 g 30° below -x axis A₂ = A cos a = B, =B cos b = C₁ = C cos g = R₂-A₂+B+C₂ A, = A sin a = B, =B sin b = C₂ = C sin g = R₂ = A + B + C = R=(R₁, R₂): R= √ (R₂²+R²) = Quadrant Direction:q=tan [R, R.] 1 (c) A: 200 g along +y axis B: 100 g 60° above +x axis C: 200 g 45° below +x axis A₁ = A cos a = B=B cos b = C₁=C cos g = R₂-A₂+B+C₂ A₁ = A sin a = B, =B sin b = C₁ = C sin g = R= A + B + C₂ = R=(R₁, R₂): _ R=√(R₂²+R₂²) = Direction:q=tan¹ [R₂/R₂] = Quadrant
Compare the magnitudes of the equilibrant vectors measured from the experiment with
those obtained from the graphical and component methods.
Example: A: 200 g 60° above +x axis
B: 300 g 45° above -x axis
C: 400 g 30°below -x-axis
A, A cos a = 1.96 N x cos 60° = 0.98 N
B₂B cos b = 2.94 N x cos 135º = -2.08 N
C, C cos g = 3.92 N x cos 210°= -3.39 N
R₂-A, + B + C₂ = -4.49 N
A, A sin a = 1.96 N x sin 60° = 1.70 N
By
B sin b = 2.94 N x sin 135º = 2.08 N
C, C sin g = 3.92 N x sin 210° = -1.96 N
Ry= Ay+ By + Cy = 1.82 N
Questions:
I: (a) A: 200 g along +x axis
B: 100 g 45° above -x axis
A₂ = A cos a =
B₂ =B cos b =
R₂-A₂+ B₁₂=
A₂ = A sin a =
B, = B sin b =
R₂ = A + B₂ =
R=(R₂. R₂):_ Quadrant
R = √ (R₂²+R₂²) =
Direction:q=tan [R, /R.]
(c)
A: 100 g along -y axis
B: 200 g along -x axis
A = A cos a =
B = B cos b =
R₂-A₂+ B₂ =
A = A sin a =
B, B sin b =
R=A, +B₂ =
R=(R₁, R₂): Quadrant
R = √ (R₂²+R₂²) =
Direction:q tan¹ [R, /R]
Transcribed Image Text:Compare the magnitudes of the equilibrant vectors measured from the experiment with those obtained from the graphical and component methods. Example: A: 200 g 60° above +x axis B: 300 g 45° above -x axis C: 400 g 30°below -x-axis A, A cos a = 1.96 N x cos 60° = 0.98 N B₂B cos b = 2.94 N x cos 135º = -2.08 N C, C cos g = 3.92 N x cos 210°= -3.39 N R₂-A, + B + C₂ = -4.49 N A, A sin a = 1.96 N x sin 60° = 1.70 N By B sin b = 2.94 N x sin 135º = 2.08 N C, C sin g = 3.92 N x sin 210° = -1.96 N Ry= Ay+ By + Cy = 1.82 N Questions: I: (a) A: 200 g along +x axis B: 100 g 45° above -x axis A₂ = A cos a = B₂ =B cos b = R₂-A₂+ B₁₂= A₂ = A sin a = B, = B sin b = R₂ = A + B₂ = R=(R₂. R₂):_ Quadrant R = √ (R₂²+R₂²) = Direction:q=tan [R, /R.] (c) A: 100 g along -y axis B: 200 g along -x axis A = A cos a = B = B cos b = R₂-A₂+ B₂ = A = A sin a = B, B sin b = R=A, +B₂ = R=(R₁, R₂): Quadrant R = √ (R₂²+R₂²) = Direction:q tan¹ [R, /R]
Expert Solution
Step 1

As per our guidelines  we are supposed to answer only one question. Kindly repost other question as separate question. 

 

Physics homework question answer, step 1, image 1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Height and distance
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON