Combustion requires three primary components: fuel, energy, and an oxidizer. The fuel is the organic starting material and once the activation energy is achieved, large amounts of energy are rapidly released fragmenting reactants into individual atoms. The components quickly rearrange into smaller and more stable molecules. Oxygen serves as an oxidizer, due to its electronegativity, accepting electrons and forming products including water and carbon dioxide. Nitroguanidine (CH4N4O2) is used in select fertilizers and more commonly as a component to propel munitions. Suppose a field artillery soldier was calculating how much nitroguanidine was needed to propel a round. The soldier would need to consider the desired volume of gas to displace along the gun tube and the ambient operating conditions. a. Predict the reaction products for the detonation of 1 mole of nitroguanidine. b. Calculate the amount of explosive needed (in pounds) to produce 1500.0 liters of gas at standard temperature and pressure (STP), 1.0 atmosphere of pressure and 32 °F. c. What do you think happens if you limit the amount of oxygen available during the reaction?
Combustion requires three primary components: fuel, energy, and an oxidizer. The fuel is the organic starting material and once the activation energy is achieved, large amounts of energy are rapidly released fragmenting reactants into individual atoms. The components quickly rearrange into smaller and more stable molecules. Oxygen serves as an oxidizer, due to its electronegativity, accepting electrons and forming products including water and carbon dioxide.
Nitroguanidine (CH4N4O2) is used in select fertilizers and more commonly as a component to propel munitions. Suppose a field artillery soldier was calculating how much nitroguanidine was needed to propel a round. The soldier would need to consider the desired volume of gas to displace along the gun tube and the ambient operating conditions.
a. Predict the reaction products for the detonation of 1 mole of nitroguanidine.
b. Calculate the amount of explosive needed (in pounds) to produce 1500.0 liters of gas at standard temperature and pressure (STP), 1.0 atmosphere of pressure and 32 °F.
c. What do you think happens if you limit the amount of oxygen available during the reaction?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 7 images