Coefficient of thernmal expansion as a funetion of temperature. Coefficient of thernmal expansion, a (in/in/°F) 6.47 ×10 6.24 × 10 5.72 × 10* 5.09 × 10* • 4.30 × 10* 3.33 x 10* 2.45×10* Temperature, T (°F) 80 40 - 40 -120 - 200 - 280 340 6. find the derivative at T=45 using 3rd order polynomial

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

find the derivative at T=45 using 3rd order polynomial

 

 

Coefficient of thermal expansion as a function of temperature.
Temperature, T
|(°F)
80
Coefficient of thermal
expansion, a (in/in/°F)
6.47x10
6.24 ×10*
5.72 x10
40
- 40
5.09 x 106
.4.30 x10
3.33 x10
2.45x10
-120
- 200
- 280
6.
- 340
find the derivative at T=45 using 3rd order polynomial
Transcribed Image Text:Coefficient of thermal expansion as a function of temperature. Temperature, T |(°F) 80 Coefficient of thermal expansion, a (in/in/°F) 6.47x10 6.24 ×10* 5.72 x10 40 - 40 5.09 x 106 .4.30 x10 3.33 x10 2.45x10 -120 - 200 - 280 6. - 340 find the derivative at T=45 using 3rd order polynomial
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,