Code A function []=find_root_A() myfun = @f; x0 = 0.5; x = fzero(myfun,x0) end function y f(x) y = cos(x).^3-x; end Code B function []=find_root_B() myfun @(x) cos(x).^3 - x; x_vec [0.5:0.1:4]; A=myfun_4(x_vec)'* myfun_4(x_vec); dummy=sum(eig(A)); x=sqrt(dummy) end Code C function []=find_root_C() myfun @(x) cos(x). ^3 - x; h=1e-2; derivative=@(x,h) (myfun(x+h)-myfun(x))/h; dummy=1; accuracy 1e-15; Code D function []=find_root_D() myfun @(x) cos(x).^3 - x; x_vec=[0.5:0.1:4]; B=myfun(x_vec)'*myfun(x_vec); dummy-pinv(B)*x_vec'; x=max(abs(dummy)) end x=0.5; while (abs(dummy-x)>accuracy) dummy=x; if (abs(derivative(x,h))>2*eps) x=x-myfun(x)/derivative(x,h); else disp(derivative(x,h)) sprintf('derivative too close to zero!') break end end disp(x) end

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%

You want  to use MATLAB in order to find an approximate solution to the equation cos3 (x) - x = 0. With which of the presented MATLAB codes is it possible to find a solution to the equation above? (There might be
more than one correct answer)

Code A
function []=find_root_A()
myfun = @f;
x0 = 0.5;
x = fzero(myfun,x0)
end
function y f(x)
y = cos(x).^3-x;
end
Code B
function []=find_root_B()
myfun @(x) cos(x).^3 - x;
x_vec [0.5:0.1:4];
A=myfun_4(x_vec)'* myfun_4(x_vec);
dummy=sum(eig(A));
x=sqrt(dummy)
end
Code C
function []=find_root_C()
myfun @(x) cos(x). ^3 - x;
h=1e-2;
derivative=@(x,h) (myfun(x+h)-myfun(x))/h;
dummy=1;
accuracy 1e-15;
Code D
function []=find_root_D()
myfun @(x) cos(x).^3 - x;
x_vec=[0.5:0.1:4];
B=myfun(x_vec)'*myfun(x_vec);
dummy-pinv(B)*x_vec';
x=max(abs(dummy))
end
x=0.5;
while (abs(dummy-x)>accuracy)
dummy=x;
if (abs(derivative(x,h))>2*eps)
x=x-myfun(x)/derivative(x,h);
else
disp(derivative(x,h))
sprintf('derivative too close to zero!')
break
end
end
disp(x)
end
Transcribed Image Text:Code A function []=find_root_A() myfun = @f; x0 = 0.5; x = fzero(myfun,x0) end function y f(x) y = cos(x).^3-x; end Code B function []=find_root_B() myfun @(x) cos(x).^3 - x; x_vec [0.5:0.1:4]; A=myfun_4(x_vec)'* myfun_4(x_vec); dummy=sum(eig(A)); x=sqrt(dummy) end Code C function []=find_root_C() myfun @(x) cos(x). ^3 - x; h=1e-2; derivative=@(x,h) (myfun(x+h)-myfun(x))/h; dummy=1; accuracy 1e-15; Code D function []=find_root_D() myfun @(x) cos(x).^3 - x; x_vec=[0.5:0.1:4]; B=myfun(x_vec)'*myfun(x_vec); dummy-pinv(B)*x_vec'; x=max(abs(dummy)) end x=0.5; while (abs(dummy-x)>accuracy) dummy=x; if (abs(derivative(x,h))>2*eps) x=x-myfun(x)/derivative(x,h); else disp(derivative(x,h)) sprintf('derivative too close to zero!') break end end disp(x) end
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman