cmpute the flux integral &F.nas where F=-4x yù+ 4 and CW +y2-1 oriented anti. the circle x? dock wLse.
cmpute the flux integral &F.nas where F=-4x yù+ 4 and CW +y2-1 oriented anti. the circle x? dock wLse.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
I do not understand how to find the flux integral or what the symbol means.
![**Problem Statement:**
Compute the flux integral ∫C **F** · d**r**, where **F** = -4x **i** + 4y **j** and C is the circle x² + y² = 1 oriented anti-clockwise.
**Solution:**
1. Parameterize the circle x² + y² = 1 using:
- x = cos(t)
- y = sin(t)
- 0 ≤ t ≤ 2π
2. The vector field **F** becomes:
\[
\begin{align*}
F & = -4(\cos(t)) \, \mathbf{i} + 4(\sin(t)) \, \mathbf{j} \\
& = -4\cos(t) \, \mathbf{i} + 4\sin(t) \, \mathbf{j}
\end{align*}
\]
3. The differential arc length along C is given by:
\[
\begin{align*}
d\mathbf{r} & = \frac{d}{dt}(\cos(t), \sin(t)) \, dt \\
& = (-\sin(t) \, \mathbf{i} + \cos(t) \, \mathbf{j}) \, dt
\end{align*}
\]
4. Compute **F** · d**r**:
\[
\begin{align*}
\mathbf{F} \cdot d\mathbf{r} & = (-4\cos(t), 4\sin(t)) \cdot (-\sin(t), \cos(t)) \, dt \\
& = (4\cos(t)\sin(t) + 4\sin(t)\cos(t)) \, dt \\
& = 2\sin(2t) \, dt
\end{align*}
\]
5. Evaluate the integral:
\[
\begin{align*}
\int_0^{2\pi} 2\sin(2t) \, dt & = \left[-\cos(2t)\right]_0^{2\pi} \\
& = -\cos(4\pi) + \cos(0) \\
& = -1 + 1 \\
& = 0
\end{](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6e95c083-16cc-43f8-a531-1de0b0a0845b%2Fb35e7118-0e93-4684-8e8f-9b87e6cc7edb%2Fzzf177_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Compute the flux integral ∫C **F** · d**r**, where **F** = -4x **i** + 4y **j** and C is the circle x² + y² = 1 oriented anti-clockwise.
**Solution:**
1. Parameterize the circle x² + y² = 1 using:
- x = cos(t)
- y = sin(t)
- 0 ≤ t ≤ 2π
2. The vector field **F** becomes:
\[
\begin{align*}
F & = -4(\cos(t)) \, \mathbf{i} + 4(\sin(t)) \, \mathbf{j} \\
& = -4\cos(t) \, \mathbf{i} + 4\sin(t) \, \mathbf{j}
\end{align*}
\]
3. The differential arc length along C is given by:
\[
\begin{align*}
d\mathbf{r} & = \frac{d}{dt}(\cos(t), \sin(t)) \, dt \\
& = (-\sin(t) \, \mathbf{i} + \cos(t) \, \mathbf{j}) \, dt
\end{align*}
\]
4. Compute **F** · d**r**:
\[
\begin{align*}
\mathbf{F} \cdot d\mathbf{r} & = (-4\cos(t), 4\sin(t)) \cdot (-\sin(t), \cos(t)) \, dt \\
& = (4\cos(t)\sin(t) + 4\sin(t)\cos(t)) \, dt \\
& = 2\sin(2t) \, dt
\end{align*}
\]
5. Evaluate the integral:
\[
\begin{align*}
\int_0^{2\pi} 2\sin(2t) \, dt & = \left[-\cos(2t)\right]_0^{2\pi} \\
& = -\cos(4\pi) + \cos(0) \\
& = -1 + 1 \\
& = 0
\end{
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)