Clearly demonstrate how you use Stokes' Theorem to evaluate f F 1- y³, x³ + e²,0) and C is the circle a² + y² = 9, counterclockwise direction. F dr, where F n

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
### Application of Stokes' Theorem

To evaluate the line integral using Stokes' Theorem, let's consider the given problem:

Evaluate the line integral \(\oint_{C} \mathbf{F} \cdot d\mathbf{r}\), where \(\mathbf{F} = \langle 1 - y^3, x^3 + e^{y^2}, 0 \rangle\) and \(C\) is the circle \(x^2 + y^2 = 9\), oriented in the counterclockwise direction.

#### Step-by-Step Solution:

1. **Stokes' Theorem Statement:**

   Stokes' Theorem relates a surface integral of a curl of a vector field to a line integral over its boundary:

   \[
   \oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S}
   \]

   Where \(S\) is a surface with boundary \(C\).

2. **Compute the Curl of \(\mathbf{F}\):**

   Given \(\mathbf{F} = (1 - y^3, x^3 + e^{y^2}, 0)\), the curl of \(\mathbf{F}\) is:

   \[
   \nabla \times \mathbf{F} = \begin{vmatrix}
   \mathbf{i} & \mathbf{j} & \mathbf{k} \\
   \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
   1 - y^3 & x^3 + e^{y^2} & 0
   \end{vmatrix}
   \]

   Calculating the determinant:

   \[
   \nabla \times \mathbf{F} = \left(0 - 0\right) \mathbf{i} - \left(0 - 0\right) \mathbf{j} + \left(\frac{\partial}{\partial x}(x^3 + e^{y^2}) - \frac{\partial}{\partial y}(1 - y^3)\right) \mathbf{k}
   \]

   Simplifying:

   \[
   \nabla \times \mathbf{F
Transcribed Image Text:### Application of Stokes' Theorem To evaluate the line integral using Stokes' Theorem, let's consider the given problem: Evaluate the line integral \(\oint_{C} \mathbf{F} \cdot d\mathbf{r}\), where \(\mathbf{F} = \langle 1 - y^3, x^3 + e^{y^2}, 0 \rangle\) and \(C\) is the circle \(x^2 + y^2 = 9\), oriented in the counterclockwise direction. #### Step-by-Step Solution: 1. **Stokes' Theorem Statement:** Stokes' Theorem relates a surface integral of a curl of a vector field to a line integral over its boundary: \[ \oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} \] Where \(S\) is a surface with boundary \(C\). 2. **Compute the Curl of \(\mathbf{F}\):** Given \(\mathbf{F} = (1 - y^3, x^3 + e^{y^2}, 0)\), the curl of \(\mathbf{F}\) is: \[ \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1 - y^3 & x^3 + e^{y^2} & 0 \end{vmatrix} \] Calculating the determinant: \[ \nabla \times \mathbf{F} = \left(0 - 0\right) \mathbf{i} - \left(0 - 0\right) \mathbf{j} + \left(\frac{\partial}{\partial x}(x^3 + e^{y^2}) - \frac{\partial}{\partial y}(1 - y^3)\right) \mathbf{k} \] Simplifying: \[ \nabla \times \mathbf{F
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,