cle with a particular defect in its emission control system is taken to a succession of randomly selected mechanics until  r = 16 of them have correctly diagnosed the problem. Suppose that this requires diagnoses by 20 different mechanics (so there were 4 incorrect diagnoses). Let p = P(correct diagnosis), so p is the proportion of all mechanics who would correctly diagnose the problem. What is the mle of p? p̂ =  Is it the same as the mle if a random sample of 20 mechanics results in 16 correct diagnoses? Explain. No, the formula for the first one is (number of failures)/(number of trials) and the formula for the second one is (number of successes)/(number of failures). No, the formula for the first one is (number of failures)/(number of trials) and the formula for the second one is (number of successes)/(number of trials).     Yes, both mles are equal to the fraction (number of successes)/(number of failures). No, the formula for the first one is (number of successes)/(number of failures) and the formula for the second one is (number of failures)/(number of trials).

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
A vehicle with a particular defect in its emission control system is taken to a succession of randomly selected mechanics until 
r = 16 of them have correctly diagnosed the problem. Suppose that this requires diagnoses by 20 different mechanics (so there were 4 incorrect diagnoses). Let p = P(correct diagnosis), so p is the proportion of all mechanics who would correctly diagnose the problem. What is the mle of p?
p̂ = 
Is it the same as the mle if a random sample of 20 mechanics results in 16 correct diagnoses? Explain.
No, the formula for the first one is (number of failures)/(number of trials) and the formula for the second one is (number of successes)/(number of failures).
No, the formula for the first one is (number of failures)/(number of trials) and the formula for the second one is (number of successes)/(number of trials).    
Yes, both mles are equal to the fraction (number of successes)/(number of failures).
No, the formula for the first one is (number of successes)/(number of failures) and the formula for the second one is (number of failures)/(number of trials).
Yes, both mles are equal to the fraction (number of successes)/(number of trials).
How does the mle compare to the estimate resulting from the use of the unbiased estimator 
p̂ = 
r − 1
r + x − 1
?
The mle is greater than the the unbiased estimator.
The mle is less than the the unbiased estimator.    
The mle is equal to the the unbiased estimator.
A vehicle with a particular defect in its emission control system is taken to a succession of randomly selected mechanics until r = 16 of them have correctly diagnosed the problem. Suppose that this requires
diagnoses by 20 different mechanics (so there were 4 incorrect diagnoses). Let p = P(correct diagnosis), so p is the proportion of all mechanics who would correctly diagnose the problem. What is the mle of p?
p =
Is it the same as the mle if a random sample of 20 mechanics results in 16 correct diagnoses? Explain.
O No, the formula for the first one is (number of failures)/(number of trials) and the formula for the second one is (number of successes)/(number of failures).
No, the formula for the first one is (number of failures)/(number of trials) and the formula for the second one is (number of successes)/(number of trials).
Yes, both mles are equal to the fraction (number of successes)/(number of failures).
O No, the formula for the first one is (number of successes)/(number of failures) and the formula for the second one is (number of failures)/(number of trials).
O Yes, both mles are equal to the fraction (number of successes)/(number of trials).
How does the mle compare to the estimate resulting from the use of the unbiased estimator p
=
O The mle is greater than the the unbiased estimator.
O The mle is less than the the unbiased estimator.
O The mle is equal to the the unbiased estimator.
r - 1
r+ x - 1
Transcribed Image Text:A vehicle with a particular defect in its emission control system is taken to a succession of randomly selected mechanics until r = 16 of them have correctly diagnosed the problem. Suppose that this requires diagnoses by 20 different mechanics (so there were 4 incorrect diagnoses). Let p = P(correct diagnosis), so p is the proportion of all mechanics who would correctly diagnose the problem. What is the mle of p? p = Is it the same as the mle if a random sample of 20 mechanics results in 16 correct diagnoses? Explain. O No, the formula for the first one is (number of failures)/(number of trials) and the formula for the second one is (number of successes)/(number of failures). No, the formula for the first one is (number of failures)/(number of trials) and the formula for the second one is (number of successes)/(number of trials). Yes, both mles are equal to the fraction (number of successes)/(number of failures). O No, the formula for the first one is (number of successes)/(number of failures) and the formula for the second one is (number of failures)/(number of trials). O Yes, both mles are equal to the fraction (number of successes)/(number of trials). How does the mle compare to the estimate resulting from the use of the unbiased estimator p = O The mle is greater than the the unbiased estimator. O The mle is less than the the unbiased estimator. O The mle is equal to the the unbiased estimator. r - 1 r+ x - 1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman