Claim. If r> 1 and 2 E N., then N, - {x} ~ N₁_1. Proof: We have N, - (N-1- {x}) U {x}. Since N, 1- {x} and {x} are disjoint, = N₁ = (N-1- {a}) U{r} = N₂-1- {x} + {x} Since N {x}= = and therefore, N, - {x} ~ N-1. " we have N.1- {x}= , =
Claim. If r> 1 and 2 E N., then N, - {x} ~ N₁_1. Proof: We have N, - (N-1- {x}) U {x}. Since N, 1- {x} and {x} are disjoint, = N₁ = (N-1- {a}) U{r} = N₂-1- {x} + {x} Since N {x}= = and therefore, N, - {x} ~ N-1. " we have N.1- {x}= , =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Plz solve correctly
![Claim. If r> 1 and 2 EN,, then N, - {x}~ N-1.
a
Proof: We have N, = (N-1 - {x}) U {x}. Since Nr 1 - {x} and {*} are disjoint,
-
N, (N-1- {2}) U {x}
= N₂-1- {x} + {x}
=
Since N
{x} =
, and therefore, N, - {x}~ N, 1.
we have N₁1 - {x} =](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F374fb018-a137-42da-b757-b1fa97ba03f1%2Fb98333c7-1bcf-4ef8-9836-8c226e8205b8%2Fzf53cwp_processed.png&w=3840&q=75)
Transcribed Image Text:Claim. If r> 1 and 2 EN,, then N, - {x}~ N-1.
a
Proof: We have N, = (N-1 - {x}) U {x}. Since Nr 1 - {x} and {*} are disjoint,
-
N, (N-1- {2}) U {x}
= N₂-1- {x} + {x}
=
Since N
{x} =
, and therefore, N, - {x}~ N, 1.
we have N₁1 - {x} =
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 11 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)