Claim: μ ≥ 8000; a=0.01 Sample statistics: x=7700, s=460, n=22 A. Ho: μ-8000 H₂: μ#8000 OC. Ho: #8000 H₂:μ=8000 *** B. Ho: 28000 H₂: μ< 8000 OD. Ho: ≤8000 H₂ μ>8000 What is the value of the standardized test statistic? The standardized test statistic is -3.06. (Round to two decimal places as needed.) What is the P-value? P= (Round to three decimal places as needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Question

Answer the question 

### T-Test for Population Mean

In this example, we aim to use a t-test to examine a claim about the population mean \( \mu \) at a specified significance level \( \alpha \). The provided sample statistics are used under the assumption that the population is normally distributed.

#### Given Information:
- Claim: \( \mu \geq 8000 \)
- Significance Level (\( \alpha \)): 0.01
- Sample Mean (\( \bar{x} \)): 7700
- Sample Standard Deviation (\( s \)): 460
- Sample Size (\( n \)): 22

#### Step-by-step Solution:

1. **Formulate the Hypotheses:**
    - The null hypothesis (\( H_0 \)): \( \mu \geq 8000 \)
    - The alternative hypothesis (\( H_a \)): \( \mu < 8000 \)

    Choose the correct option based on the given claim:

    - A. \( H_0 \): \( \mu = 8000 \), \( H_a \): \( \mu \neq 8000 \)
    - B. \( H_0 \): \( \mu \geq 8000 \), \( H_a \): \( \mu < 8000 \) (selected)
    - C. \( H_0 \): \( \mu \neq 8000 \), \( H_a \): \( \mu = 8000 \)
    - D. \( H_0 \): \( \mu \leq 8000 \), \( H_a \): \( \mu > 8000 \)

2. **Calculate the Standardized Test Statistic:**
    - The standardized test statistic (\( t \)) is calculated using the formula for the t-test:
      \[
      t = \frac{\bar{x} - \mu}{s / \sqrt{n}}
      \]
      Given:
      \[
      \bar{x} = 7700, \quad \mu = 8000, \quad s = 460, \quad n = 22
      \]
      Substitute the values:
      \[
      t = \frac{7700 - 8000}{460 / \sqrt{22}} = \frac{-300}{98.09} \approx -3.06
      \]
      The standardized test statistic is \( -3.06
Transcribed Image Text:### T-Test for Population Mean In this example, we aim to use a t-test to examine a claim about the population mean \( \mu \) at a specified significance level \( \alpha \). The provided sample statistics are used under the assumption that the population is normally distributed. #### Given Information: - Claim: \( \mu \geq 8000 \) - Significance Level (\( \alpha \)): 0.01 - Sample Mean (\( \bar{x} \)): 7700 - Sample Standard Deviation (\( s \)): 460 - Sample Size (\( n \)): 22 #### Step-by-step Solution: 1. **Formulate the Hypotheses:** - The null hypothesis (\( H_0 \)): \( \mu \geq 8000 \) - The alternative hypothesis (\( H_a \)): \( \mu < 8000 \) Choose the correct option based on the given claim: - A. \( H_0 \): \( \mu = 8000 \), \( H_a \): \( \mu \neq 8000 \) - B. \( H_0 \): \( \mu \geq 8000 \), \( H_a \): \( \mu < 8000 \) (selected) - C. \( H_0 \): \( \mu \neq 8000 \), \( H_a \): \( \mu = 8000 \) - D. \( H_0 \): \( \mu \leq 8000 \), \( H_a \): \( \mu > 8000 \) 2. **Calculate the Standardized Test Statistic:** - The standardized test statistic (\( t \)) is calculated using the formula for the t-test: \[ t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \] Given: \[ \bar{x} = 7700, \quad \mu = 8000, \quad s = 460, \quad n = 22 \] Substitute the values: \[ t = \frac{7700 - 8000}{460 / \sqrt{22}} = \frac{-300}{98.09} \approx -3.06 \] The standardized test statistic is \( -3.06
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman