Choose the best answer. An algorithm to determine if a graph with n=>3 vertices is a star is: a.Pick any node; if its degree is 1, traverse to a neighbor node. Consider the node you end up with. If its degree is not n-1, return false, else check that all its neighbors have degree 1: if so, return true, else return false. b.Pick any node; if its degree is n-1, traverse to a neighbor node. Consider the node you end up with. If its degree is not 1, return true, else check that all its neighbors have degree n-1: if so, return true, else return false. c.Pick any node; if its degree is 3, traverse to a neighbor node. Consider the node you end up with. If its degree is not n-1, return false, else check that all its neighbors have degree 3: if so, return true, else return false. d. Pick any node; if its degree is n-3, traverse to a neighbor node. Consider the node you end up with. If its degree is not n-3, return true, else check that all its neighbors have degree 3: if so, return false, else return true
Choose the best answer. An
a.Pick any node; if its degree is 1, traverse to a neighbor node. Consider the node you end up with. If its degree is not n-1, return false, else check that all its neighbors have degree 1: if so, return true, else return false.
b.Pick any node; if its degree is n-1, traverse to a neighbor node. Consider the node you end up with. If its degree is not 1, return true, else check that all its neighbors have degree n-1: if so, return true, else return false.
c.Pick any node; if its degree is 3, traverse to a neighbor node. Consider the node you end up with. If its degree is not n-1, return false, else check that all its neighbors have degree 3: if so, return true, else return false.
d. Pick any node; if its degree is n-3, traverse to a neighbor node. Consider the node you end up with. If its degree is not n-3, return true, else check that all its neighbors have degree 3: if so, return false, else return true
Trending now
This is a popular solution!
Step by step
Solved in 4 steps