Choose A or B, but not both. Given F(s), find f (t)=L-{F(s)} using Laplace Transform Tables from Theorems 7.2 &3. Simplify your answer. 7s2 +10s+19 5s+1 A.) F(s)= B.) F(s)= .2 +7)(s+1)? s2 -8s +13 s²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

SUBJECT: DIFFERENTIAL EQUATION

**Problem #2:**
Choose A or B, but not both.

Given \( F(s) \), find \( f(t) = \mathcal{L}^{-1}\{F(s)\} \) using Laplace Transform Tables from Theorems 7.2 & 3. Simplify your answer.

**Option A:**
\[ F(s) = \frac{7s^2 + 10s + 19}{(s^2 + 7)(s+1)^2} \]

**Option B:**
\[ F(s) = \frac{5s + 1}{s^2 - 8s + 13} \]
Transcribed Image Text:**Problem #2:** Choose A or B, but not both. Given \( F(s) \), find \( f(t) = \mathcal{L}^{-1}\{F(s)\} \) using Laplace Transform Tables from Theorems 7.2 & 3. Simplify your answer. **Option A:** \[ F(s) = \frac{7s^2 + 10s + 19}{(s^2 + 7)(s+1)^2} \] **Option B:** \[ F(s) = \frac{5s + 1}{s^2 - 8s + 13} \]
Expert Solution
Step 1

Given:

A)

F(s)=7s2+10s+19s2+7s+12

Find f(t)=L-1Fs as follows.

f(t)=L-1F(s)=L-17s2+10s+19s2+7s+12

Step 2

By partial fraction decomposition,

7s2+10s+19s2+7s+12=As+Bs2+7+Cs+1+Ds+12=As+Bs+12+Cs+1s2+7+Ds2+7s2+7s+12

Therefore,

7s2+10s+19=As+Bs+12+Cs+1s2+7+Ds2+7s3+7s+s2+7

For s=-1,

7-12+10-1+19=D-12+77-10+19=8D8D=16D=2

 

Step 3

Then we have,

7s2+10s+19=As+Bs+12+Cs+1s2+7+2s2+7=As+Bs2+2s+1+Cs3+7s+s2+7+2s2+14=As3+2As2+As+Bs2+2Bs+B+Cs3+7Cs+Cs2+7C+2s2+14=s3A+C+s22A+B+C+2+s2B+A+7C+B+7C+14

Equating the coefficients of like terms, we get,

2A+B+C+2=72B+A+7C=10B+7C+14=19A+C=0

Solving the above system gives,

A=0B=5C=0

Step 4

Therefore,

7s2+10s+19s2+7s+12=As+Bs2+7+Cs+1+Ds+12=0+5s2+7+0s+1+2s+12=5s2+7+2s+12

Then,

f(t)=L-1F(s)=L-17s2+10s+19s2+7s+12=L-15s2+7+2s+12=L-15s2+7+L-12s+12=5L-11s2+72+2L-11s+12=5sin7t7+2te-t                                                Since L-11s2+a2 =sin(at)a and L-1 1s-a2=teat 

steps

Step by step

Solved in 8 steps

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,