Chicken hatcheries employ workers to determine the sex of the baby chicks. The hatcheries claim that the workers are correct 95 percent of the time. An investigator believes the workers’ success rate (workers are correct) is actually less than 95 percent of the time. The investigator selects a random sample of chicks and finds that the hatchery workers had a success rate of 0.936. The conditions for inference were checked and verified, and the p-value of the test was given as 0.0322. If the null hypothesis is true, which of the following statements is a correct interpretation of the p-value? Of all possible samples of the same size, 3.22% will result in a success rate of 93.6% or less. A Of all possible samples of the same size, 3.22% will result in a success rate of 93.6% or more. B Of all possible samples of the same size, 3.22% will result in a success rate of 95% or less. C Of all possible samples of the same size, 3.22% will result in a success rate of 95% or more. D Of all possible samples of the same size, 3.22% will result in a success rate of less than 93.6% or more than 96.4%.
Chicken hatcheries employ workers to determine the sex of the baby chicks. The hatcheries claim that the workers are correct 95 percent of the time. An investigator believes the workers’ success rate (workers are correct) is actually less than 95 percent of the time. The investigator selects a random sample of chicks and finds that the hatchery workers had a success rate of 0.936. The conditions for inference were checked and verified, and the p-value of the test was given as 0.0322. If the null hypothesis is true, which of the following statements is a correct interpretation of the p-value?
-
Of all possible samples of the same size, 3.22% will result in a success rate of 93.6% or less.
A -
Of all possible samples of the same size, 3.22% will result in a success rate of 93.6% or more.
B -
Of all possible samples of the same size, 3.22% will result in a success rate of 95% or less.
C -
Of all possible samples of the same size, 3.22% will result in a success rate of 95% or more.
D -
Of all possible samples of the same size, 3.22% will result in a success rate of less than 93.6% or more than 96.4%.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps