Problem 15 Excess of zinc reacts with HCl(aq) in the reaction: Zn(s) + 2HCI(aq, 4.00 M) → ZnCl,(aq, 0.100 M) + H,(g, 0.100 atm) The immediate amounts of reacting species are: [HCI], = 4.00 M, ZnCl,o = 0.100 M, P, = 0.100 atm. The battery, which utilizes the above redox process possesses the following cell diagram: Zn|Zn*(0.100 M)||H* (4.00 M)|H,(0.100 atm)|Pt. Use the table of standard reduction half-cell potentials in your textbook to calculate: (a) the standard cell potential, Eel, (b) the immediate cell potential, Eell at concentrations and pressures described above, and (c) the immediate Gibbs free energy change for the reaction. Enter your answers in the boxes provided with correct units and sig. figs.: The standard Answer (a): cell potential is ): Ece %3D "cell The immediate Answer (b): %3D cell potential is ): Ecell The immediate Gibbs : AG free energy change is Answer (c): %3D Standard Reduction Potentials at 25°C* Table 18.1 Half-Reaction E(V) F.(g) + 2e - 2F (ag) 0,(g) + 2H*(aq) + 2e O2(g) + H,O Co"(aq) + e – Co2*(aq) H,O2(aq) + 2H*(aq) + 2e 2H,O PbO2(s) + 4H*(aq) + SO (aq) + 2e PBSO,(s) + 2H,O Ce*(aq) + e - Ce"(aq) MnO,(aq) + 8H*(aq) + 5e Mn²*(aq) + 4H,O Au*(aq) + 3e- Au(s) C2(g) + 2e – 2CI (aq) Cr,03 (aq) + 14H*(aq) + 6e¯ → 2Cr**(aq) + 7H,O MnO2(s) + 4H*(aq) + 2e Mn²+(aq) + 2H,O O,(g) + 4H*(aq) + 4e → 2H,O Br,(1) + 2e - 2Br (aq) NO, (aq) + 4H*(aq) + 3e NO(g) + 2H2O 2H3²+(aq) + 2e – Hgž*(aq) Hgž*(aq) + 2e → 2Hg(l) Ag*(aq) + e- Ag(s) Fe*(aq) + e –→ Fe2*(aq) O,(8) + 2H*(aq) + 2e¯ → H,O2(aq) MnO,(aq) + 2H,0 + 3e¯ → MnO2(s) + 40H (aq) L(s) + 2e → 21¯(aq) +2.87 +2.07 +1.82 +1.77 +1.70 +1.61 +1.51 +1.50 +1.36 +1.33 +1.23 +1.23 +1.07 +0.96 +0.92 +0.85 +0.80 +0.77 +0.68 +0.59 +0.53 O,(g) + 2H,0 + 4e¯ → 40H¯(ag) +0.40 Cu*(aq) + 2e → Cu(s) AGCI(s) + e → Ag(s) + Cl¯(aq) So (aq) + 4H*(aq) + 2e SO-(g) + 2H2O Cu*(aq) + e Sn(aq) + 2e 2H*(aq) + 2e Pb*(aq) + 2e Sn2*(aq) + 2e Ni²*(aq) + 2e Co"(aq) + 2e PbSO,(s) + 2e Cd²*(aq) + 2e → Cd(s) Fe*(ag) + 2e → Fe(s) Cr*(aq) + 3e¯ –→ Cr(s) Zn*(aq) + 2e → Zn(s) 2H,0 + 2e → H2(g) + 20H¯(aq) Mn2+(aq) + 2e Mn(s) Al*(ag) + 3e → Al(s) Be*(aq) + 2e Be(s) Mg*(aq) + 2e Mg(s) Na*(ag) + e – Na(s) Ca(aq) + 2e Ca(s) Sr*(aq) + 2e – Sr(s) Ba*(aq) + 2e Ba(s) K*(aq) + e → K(s) Li*(aq) + e +0.34 +0.22 +0.20 → Cu*(aq) Sn²*(aq) +0.15 +0.13 H2(g) 0.00 Pb(s) -0.13 Sn(s) -0.14 Ni(s) -0.25 Co(s) -0.28 Pb(s) + SO (aq) -0.31 -0.40 -0.44 -0.74 -0.76 -0.83 -1.18 -1.66 -1.85 -2.37 -2.71 -2.87 -2.89 -2.90 -2.93 -3.05 Li(s) Increasing strength as oxidizing agent Increasing strength as reducing agent
Problem 15 Excess of zinc reacts with HCl(aq) in the reaction: Zn(s) + 2HCI(aq, 4.00 M) → ZnCl,(aq, 0.100 M) + H,(g, 0.100 atm) The immediate amounts of reacting species are: [HCI], = 4.00 M, ZnCl,o = 0.100 M, P, = 0.100 atm. The battery, which utilizes the above redox process possesses the following cell diagram: Zn|Zn*(0.100 M)||H* (4.00 M)|H,(0.100 atm)|Pt. Use the table of standard reduction half-cell potentials in your textbook to calculate: (a) the standard cell potential, Eel, (b) the immediate cell potential, Eell at concentrations and pressures described above, and (c) the immediate Gibbs free energy change for the reaction. Enter your answers in the boxes provided with correct units and sig. figs.: The standard Answer (a): cell potential is ): Ece %3D "cell The immediate Answer (b): %3D cell potential is ): Ecell The immediate Gibbs : AG free energy change is Answer (c): %3D Standard Reduction Potentials at 25°C* Table 18.1 Half-Reaction E(V) F.(g) + 2e - 2F (ag) 0,(g) + 2H*(aq) + 2e O2(g) + H,O Co"(aq) + e – Co2*(aq) H,O2(aq) + 2H*(aq) + 2e 2H,O PbO2(s) + 4H*(aq) + SO (aq) + 2e PBSO,(s) + 2H,O Ce*(aq) + e - Ce"(aq) MnO,(aq) + 8H*(aq) + 5e Mn²*(aq) + 4H,O Au*(aq) + 3e- Au(s) C2(g) + 2e – 2CI (aq) Cr,03 (aq) + 14H*(aq) + 6e¯ → 2Cr**(aq) + 7H,O MnO2(s) + 4H*(aq) + 2e Mn²+(aq) + 2H,O O,(g) + 4H*(aq) + 4e → 2H,O Br,(1) + 2e - 2Br (aq) NO, (aq) + 4H*(aq) + 3e NO(g) + 2H2O 2H3²+(aq) + 2e – Hgž*(aq) Hgž*(aq) + 2e → 2Hg(l) Ag*(aq) + e- Ag(s) Fe*(aq) + e –→ Fe2*(aq) O,(8) + 2H*(aq) + 2e¯ → H,O2(aq) MnO,(aq) + 2H,0 + 3e¯ → MnO2(s) + 40H (aq) L(s) + 2e → 21¯(aq) +2.87 +2.07 +1.82 +1.77 +1.70 +1.61 +1.51 +1.50 +1.36 +1.33 +1.23 +1.23 +1.07 +0.96 +0.92 +0.85 +0.80 +0.77 +0.68 +0.59 +0.53 O,(g) + 2H,0 + 4e¯ → 40H¯(ag) +0.40 Cu*(aq) + 2e → Cu(s) AGCI(s) + e → Ag(s) + Cl¯(aq) So (aq) + 4H*(aq) + 2e SO-(g) + 2H2O Cu*(aq) + e Sn(aq) + 2e 2H*(aq) + 2e Pb*(aq) + 2e Sn2*(aq) + 2e Ni²*(aq) + 2e Co"(aq) + 2e PbSO,(s) + 2e Cd²*(aq) + 2e → Cd(s) Fe*(ag) + 2e → Fe(s) Cr*(aq) + 3e¯ –→ Cr(s) Zn*(aq) + 2e → Zn(s) 2H,0 + 2e → H2(g) + 20H¯(aq) Mn2+(aq) + 2e Mn(s) Al*(ag) + 3e → Al(s) Be*(aq) + 2e Be(s) Mg*(aq) + 2e Mg(s) Na*(ag) + e – Na(s) Ca(aq) + 2e Ca(s) Sr*(aq) + 2e – Sr(s) Ba*(aq) + 2e Ba(s) K*(aq) + e → K(s) Li*(aq) + e +0.34 +0.22 +0.20 → Cu*(aq) Sn²*(aq) +0.15 +0.13 H2(g) 0.00 Pb(s) -0.13 Sn(s) -0.14 Ni(s) -0.25 Co(s) -0.28 Pb(s) + SO (aq) -0.31 -0.40 -0.44 -0.74 -0.76 -0.83 -1.18 -1.66 -1.85 -2.37 -2.71 -2.87 -2.89 -2.90 -2.93 -3.05 Li(s) Increasing strength as oxidizing agent Increasing strength as reducing agent
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
Please solve using exact numbers and do not round prematurely, and use proper sig figs and units. Thanks!
![Problem 15
Excess of zinc reacts with HCl(aq) in the reaction:
Zn(s) + 2HCI(aq, 4.00 M) → ZnCl,(aq, 0.100 M) + H,(g, 0.100 atm)
The immediate amounts of reacting species are: [HCI], = 4.00 M, ZnCl,o = 0.100 M, P,
= 0.100 atm. The battery, which utilizes the above redox process possesses the following cell
diagram: Zn|Zn*(0.100 M)||H* (4.00 M)|H,(0.100 atm)|Pt. Use the table of standard reduction half-cell
potentials in your textbook to calculate: (a) the standard cell potential, Eel, (b) the immediate
cell potential, Eell at concentrations and pressures described above, and (c) the immediate
Gibbs free energy change for the reaction. Enter your answers in the boxes provided with correct units
and sig. figs.:
The standard
Answer (a):
cell potential is ): Ece
%3D
"cell
The immediate
Answer (b):
%3D
cell potential is ): Ecell
The immediate Gibbs : AG
free energy change is
Answer (c):
%3D](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffa7ad6c2-70ab-44a8-a58b-540e90245cf4%2F136cad49-d840-43b6-9c70-7060aa2637c4%2F0c9r9h9_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Problem 15
Excess of zinc reacts with HCl(aq) in the reaction:
Zn(s) + 2HCI(aq, 4.00 M) → ZnCl,(aq, 0.100 M) + H,(g, 0.100 atm)
The immediate amounts of reacting species are: [HCI], = 4.00 M, ZnCl,o = 0.100 M, P,
= 0.100 atm. The battery, which utilizes the above redox process possesses the following cell
diagram: Zn|Zn*(0.100 M)||H* (4.00 M)|H,(0.100 atm)|Pt. Use the table of standard reduction half-cell
potentials in your textbook to calculate: (a) the standard cell potential, Eel, (b) the immediate
cell potential, Eell at concentrations and pressures described above, and (c) the immediate
Gibbs free energy change for the reaction. Enter your answers in the boxes provided with correct units
and sig. figs.:
The standard
Answer (a):
cell potential is ): Ece
%3D
"cell
The immediate
Answer (b):
%3D
cell potential is ): Ecell
The immediate Gibbs : AG
free energy change is
Answer (c):
%3D
![Standard Reduction Potentials at 25°C*
Table 18.1
Half-Reaction
E(V)
F.(g) + 2e - 2F (ag)
0,(g) + 2H*(aq) + 2e O2(g) + H,O
Co"(aq) + e – Co2*(aq)
H,O2(aq) + 2H*(aq) + 2e 2H,O
PbO2(s) + 4H*(aq) + SO (aq) + 2e PBSO,(s) + 2H,O
Ce*(aq) + e - Ce"(aq)
MnO,(aq) + 8H*(aq) + 5e Mn²*(aq) + 4H,O
Au*(aq) + 3e- Au(s)
C2(g) + 2e – 2CI (aq)
Cr,03 (aq) + 14H*(aq) + 6e¯ → 2Cr**(aq) + 7H,O
MnO2(s) + 4H*(aq) + 2e Mn²+(aq) + 2H,O
O,(g) + 4H*(aq) + 4e → 2H,O
Br,(1) + 2e - 2Br (aq)
NO, (aq) + 4H*(aq) + 3e NO(g) + 2H2O
2H3²+(aq) + 2e – Hgž*(aq)
Hgž*(aq) + 2e → 2Hg(l)
Ag*(aq) + e- Ag(s)
Fe*(aq) + e –→ Fe2*(aq)
O,(8) + 2H*(aq) + 2e¯ → H,O2(aq)
MnO,(aq) + 2H,0 + 3e¯ → MnO2(s) + 40H (aq)
L(s) + 2e → 21¯(aq)
+2.87
+2.07
+1.82
+1.77
+1.70
+1.61
+1.51
+1.50
+1.36
+1.33
+1.23
+1.23
+1.07
+0.96
+0.92
+0.85
+0.80
+0.77
+0.68
+0.59
+0.53
O,(g) + 2H,0 + 4e¯ → 40H¯(ag)
+0.40
Cu*(aq) + 2e → Cu(s)
AGCI(s) + e → Ag(s) + Cl¯(aq)
So (aq) + 4H*(aq) + 2e SO-(g) + 2H2O
Cu*(aq) + e
Sn(aq) + 2e
2H*(aq) + 2e
Pb*(aq) + 2e
Sn2*(aq) + 2e
Ni²*(aq) + 2e
Co"(aq) + 2e
PbSO,(s) + 2e
Cd²*(aq) + 2e → Cd(s)
Fe*(ag) + 2e → Fe(s)
Cr*(aq) + 3e¯ –→ Cr(s)
Zn*(aq) + 2e → Zn(s)
2H,0 + 2e → H2(g) + 20H¯(aq)
Mn2+(aq) + 2e Mn(s)
Al*(ag) + 3e → Al(s)
Be*(aq) + 2e Be(s)
Mg*(aq) + 2e Mg(s)
Na*(ag) + e – Na(s)
Ca(aq) + 2e Ca(s)
Sr*(aq) + 2e – Sr(s)
Ba*(aq) + 2e Ba(s)
K*(aq) + e → K(s)
Li*(aq) + e
+0.34
+0.22
+0.20
→ Cu*(aq)
Sn²*(aq)
+0.15
+0.13
H2(g)
0.00
Pb(s)
-0.13
Sn(s)
-0.14
Ni(s)
-0.25
Co(s)
-0.28
Pb(s) + SO (aq)
-0.31
-0.40
-0.44
-0.74
-0.76
-0.83
-1.18
-1.66
-1.85
-2.37
-2.71
-2.87
-2.89
-2.90
-2.93
-3.05
Li(s)
Increasing strength as oxidizing agent
Increasing strength as reducing agent](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffa7ad6c2-70ab-44a8-a58b-540e90245cf4%2F136cad49-d840-43b6-9c70-7060aa2637c4%2F1mhfabg_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Standard Reduction Potentials at 25°C*
Table 18.1
Half-Reaction
E(V)
F.(g) + 2e - 2F (ag)
0,(g) + 2H*(aq) + 2e O2(g) + H,O
Co"(aq) + e – Co2*(aq)
H,O2(aq) + 2H*(aq) + 2e 2H,O
PbO2(s) + 4H*(aq) + SO (aq) + 2e PBSO,(s) + 2H,O
Ce*(aq) + e - Ce"(aq)
MnO,(aq) + 8H*(aq) + 5e Mn²*(aq) + 4H,O
Au*(aq) + 3e- Au(s)
C2(g) + 2e – 2CI (aq)
Cr,03 (aq) + 14H*(aq) + 6e¯ → 2Cr**(aq) + 7H,O
MnO2(s) + 4H*(aq) + 2e Mn²+(aq) + 2H,O
O,(g) + 4H*(aq) + 4e → 2H,O
Br,(1) + 2e - 2Br (aq)
NO, (aq) + 4H*(aq) + 3e NO(g) + 2H2O
2H3²+(aq) + 2e – Hgž*(aq)
Hgž*(aq) + 2e → 2Hg(l)
Ag*(aq) + e- Ag(s)
Fe*(aq) + e –→ Fe2*(aq)
O,(8) + 2H*(aq) + 2e¯ → H,O2(aq)
MnO,(aq) + 2H,0 + 3e¯ → MnO2(s) + 40H (aq)
L(s) + 2e → 21¯(aq)
+2.87
+2.07
+1.82
+1.77
+1.70
+1.61
+1.51
+1.50
+1.36
+1.33
+1.23
+1.23
+1.07
+0.96
+0.92
+0.85
+0.80
+0.77
+0.68
+0.59
+0.53
O,(g) + 2H,0 + 4e¯ → 40H¯(ag)
+0.40
Cu*(aq) + 2e → Cu(s)
AGCI(s) + e → Ag(s) + Cl¯(aq)
So (aq) + 4H*(aq) + 2e SO-(g) + 2H2O
Cu*(aq) + e
Sn(aq) + 2e
2H*(aq) + 2e
Pb*(aq) + 2e
Sn2*(aq) + 2e
Ni²*(aq) + 2e
Co"(aq) + 2e
PbSO,(s) + 2e
Cd²*(aq) + 2e → Cd(s)
Fe*(ag) + 2e → Fe(s)
Cr*(aq) + 3e¯ –→ Cr(s)
Zn*(aq) + 2e → Zn(s)
2H,0 + 2e → H2(g) + 20H¯(aq)
Mn2+(aq) + 2e Mn(s)
Al*(ag) + 3e → Al(s)
Be*(aq) + 2e Be(s)
Mg*(aq) + 2e Mg(s)
Na*(ag) + e – Na(s)
Ca(aq) + 2e Ca(s)
Sr*(aq) + 2e – Sr(s)
Ba*(aq) + 2e Ba(s)
K*(aq) + e → K(s)
Li*(aq) + e
+0.34
+0.22
+0.20
→ Cu*(aq)
Sn²*(aq)
+0.15
+0.13
H2(g)
0.00
Pb(s)
-0.13
Sn(s)
-0.14
Ni(s)
-0.25
Co(s)
-0.28
Pb(s) + SO (aq)
-0.31
-0.40
-0.44
-0.74
-0.76
-0.83
-1.18
-1.66
-1.85
-2.37
-2.71
-2.87
-2.89
-2.90
-2.93
-3.05
Li(s)
Increasing strength as oxidizing agent
Increasing strength as reducing agent
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY