Change the following code for Breadth First Search Strategy so that the graph (graph values in dictionary) generates randomly. graph = { '5' : ['3','7'], '3' : ['2', '4'], '7' : ['8'], '2' : [], '4' : ['8'], '8' : [] } visited = [] # List for visited nodes. queue = [] #Initialize a queue def bfs(visited, graph, node): #function for BFS visited.append(node) queue.append(node) while queue: # Creating loop to visit each node m = queue.pop(0) print (m, end = " ") for neighbour in graph[m]: if neighbour not in visited: visited.append(neighbour) queue.append(neighbour) # Driver Code print("Following is the Breadth-First Search") bfs(visited, graph, '5') # function calling
Change the following code for Breadth First Search Strategy so that the graph (graph values in dictionary) generates randomly.
graph = {
'5' : ['3','7'],
'3' : ['2', '4'],
'7' : ['8'],
'2' : [],
'4' : ['8'],
'8' : []
}
visited = [] # List for visited nodes.
queue = [] #Initialize a queue
def bfs(visited, graph, node): #function for BFS
visited.append(node)
queue.append(node)
while queue: # Creating loop to visit each node
m = queue.pop(0)
print (m, end = " ")
for neighbour in graph[m]:
if neighbour not in visited:
visited.append(neighbour)
queue.append(neighbour)
# Driver Code
print("Following is the Breadth-First Search")
bfs(visited, graph, '5') # function calling
Step by step
Solved in 3 steps