Change the Cartesian integral to an equivalent polar integral, and then evaluate. 10 √100-x² S - 10 A. B. D. S √100-x² 100 101 200 101 400 101 100 201 π π π T 1 (1+x² + y²) ² dy dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Problem Statement:**
Change the Cartesian integral to an equivalent polar integral, and then evaluate.

\[
\int_{-10}^{10} \int_{-\sqrt{100-x^2}}^{\sqrt{100-x^2}} \frac{1}{\left(1+x^2+y^2\right)^2} \, dy \, dx
\]

**Multiple Choice Options:**

A. \(\frac{100}{101}\pi\)

B. \(\frac{200}{101}\pi\)

C. \(\frac{400}{101}\pi\)

D. \(\frac{100}{201}\pi\)

**Correct Answer:**
- Option A: \(\frac{100}{101}\pi\)

**Explanation:**
To solve the given integral, convert the Cartesian coordinates to polar coordinates where \( x = r \cos \theta \) and \( y = r \sin \theta \). The given integral's region is a circle of radius 10 centered at the origin, described in polar coordinates by \( 0 \leq r \leq 10 \) and \( 0 \leq \theta \leq 2\pi \).

The function \( \frac{1}{\left(1+x^2+y^2\right)^2} \) transforms to \( \frac{1}{\left(1+r^2\right)^2} \) in polar coordinates. The differential area element \( dy \, dx \) converts to \( r \, dr \, d\theta \).

Thus, the polar integral becomes:

\[
\int_{0}^{2\pi} \int_{0}^{10} \frac{r}{(1+r^2)^2} \, dr \, d\theta
\]

Evaluate this integral with respect to \( r \) and \( \theta \) to obtain the result.
Transcribed Image Text:**Problem Statement:** Change the Cartesian integral to an equivalent polar integral, and then evaluate. \[ \int_{-10}^{10} \int_{-\sqrt{100-x^2}}^{\sqrt{100-x^2}} \frac{1}{\left(1+x^2+y^2\right)^2} \, dy \, dx \] **Multiple Choice Options:** A. \(\frac{100}{101}\pi\) B. \(\frac{200}{101}\pi\) C. \(\frac{400}{101}\pi\) D. \(\frac{100}{201}\pi\) **Correct Answer:** - Option A: \(\frac{100}{101}\pi\) **Explanation:** To solve the given integral, convert the Cartesian coordinates to polar coordinates where \( x = r \cos \theta \) and \( y = r \sin \theta \). The given integral's region is a circle of radius 10 centered at the origin, described in polar coordinates by \( 0 \leq r \leq 10 \) and \( 0 \leq \theta \leq 2\pi \). The function \( \frac{1}{\left(1+x^2+y^2\right)^2} \) transforms to \( \frac{1}{\left(1+r^2\right)^2} \) in polar coordinates. The differential area element \( dy \, dx \) converts to \( r \, dr \, d\theta \). Thus, the polar integral becomes: \[ \int_{0}^{2\pi} \int_{0}^{10} \frac{r}{(1+r^2)^2} \, dr \, d\theta \] Evaluate this integral with respect to \( r \) and \( \theta \) to obtain the result.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning