Change the Cartesian integral -₁¹* dy dx into an equivalent polar integral. Then evaluate the polar integral. Change the Cartesian integral into an equivalent polar integral. S²-₁ S0¹-* dy dx = =APor dr de (Type exact answers, using as needed.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
---
### Cartesian to Polar Integral Conversion

#### Problem Statement:
Change the Cartesian integral \(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \, dx\) into an equivalent polar integral. Then evaluate the polar integral.

#### Solution Steps:

1. **Convert the Cartesian Integral to a Polar Integral:**

    The given Cartesian integral is:

    \[
    \int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \, dx 
    \]

2. **Express the integral limits in polar coordinates:**

    - In polar coordinates (\(r, \theta\)), the region \(x^2 + y^2 \le 1\) and \(0 \le y \le \sqrt{1 - x^2}\) translates to:
        - \(0 \le r \le 1\) (since \(r\) is the radius from the origin)
        - \(0 \le \theta \le \pi\) (since \(\theta\) ranges from \(0\) to \(\pi\) to cover the integration over the upper semicircle)

3. **Set up and evaluate the polar integral:**

    \[
    \int_{0}^{\pi} \int_{0}^{1} r \, dr \, d\theta
    \]

4. **Evaluate the integrals:**

    The step-wise evaluation of the integrals is:
    \[
    \left[ \int_{0}^{\pi} d\theta \right] \times \left[ \int_{0}^{1} r \, dr \right]
    \]

    - Evaluate the angular part:

    \[
    \int_{0}^{\pi} d\theta = \theta \Big|_{0}^{\pi} = \pi - 0 = \pi
    \]

    - Evaluate the radial part:

    \[
    \int_{0}^{1} r \, dr = \frac{r^2}{2} \Big|_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2}
    \]

5. **Combine the results:**

    Multiply the results of the angular and radial integrals:

    \[
    \pi \times \frac{
Transcribed Image Text:--- ### Cartesian to Polar Integral Conversion #### Problem Statement: Change the Cartesian integral \(\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \, dx\) into an equivalent polar integral. Then evaluate the polar integral. #### Solution Steps: 1. **Convert the Cartesian Integral to a Polar Integral:** The given Cartesian integral is: \[ \int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \, dx \] 2. **Express the integral limits in polar coordinates:** - In polar coordinates (\(r, \theta\)), the region \(x^2 + y^2 \le 1\) and \(0 \le y \le \sqrt{1 - x^2}\) translates to: - \(0 \le r \le 1\) (since \(r\) is the radius from the origin) - \(0 \le \theta \le \pi\) (since \(\theta\) ranges from \(0\) to \(\pi\) to cover the integration over the upper semicircle) 3. **Set up and evaluate the polar integral:** \[ \int_{0}^{\pi} \int_{0}^{1} r \, dr \, d\theta \] 4. **Evaluate the integrals:** The step-wise evaluation of the integrals is: \[ \left[ \int_{0}^{\pi} d\theta \right] \times \left[ \int_{0}^{1} r \, dr \right] \] - Evaluate the angular part: \[ \int_{0}^{\pi} d\theta = \theta \Big|_{0}^{\pi} = \pi - 0 = \pi \] - Evaluate the radial part: \[ \int_{0}^{1} r \, dr = \frac{r^2}{2} \Big|_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} \] 5. **Combine the results:** Multiply the results of the angular and radial integrals: \[ \pi \times \frac{
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,