Change the Cartesian integral A B 0 S* Sº 0 *1/2 •2cos(e) [²/² [ 20x(®) [cos(0) + sin(0) ] drdo 0 -2cos(@) Ⓒ ~2cos © √²/2 √200x(10) 0 0 *2cos (6) •√1-(x-1)² x+y x² + y² 0 0 S²S√²- 00 [cose + sine] rdrd0 [cose + sine] rdrde [cos (0) + sin (0)] drdo dy dr into an equivalent polar integral.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

please do not provide solutoion in image format thank you!

### Converting Cartesian to Polar Coordinates

**Objective:**
Change the Cartesian integral 

\[
\int_{0}^{2} \int_{0}^{\sqrt{1-(x-1)^2}} \frac{x+y}{x^2+y^2} \, dy \, dx
\]

into an equivalent polar integral.

**Problem:**
Given the Cartesian integral mentioned above, convert it to the polar coordinate system and evaluate the correct equivalent integral from the options listed below.

---

#### Options:

(A) 

\[
\int_{0}^{\pi/2} \int_{0}^{2 \cos(\theta)} [\cos(\theta) + \sin(\theta)] \, r \, dr \, d\theta
\]

(B) 

\[
\int_{0}^{\pi} \int_{-2 \cos(\theta)}^{0} [\cos(\theta) + \sin(\theta)] \, r \, dr \, d\theta
\]

(C) 

\[
\int_{0}^{\pi/2} \int_{0}^{2 \cos(\theta)} [\cos(\theta) + \sin(\theta)] \, r \, dr \, d\theta
\]

(D) 

\[
\int_{0}^{\pi} \int_{0}^{2 \cos(\theta)} [\cos(\theta) + \sin(\theta)] \, dr \, d\theta
\]

---

#### Analysis:

To determine the correct equivalent integral in polar coordinates, we proceed with the following steps:

1. **Convert Cartesian to Polar Coordinates:**
   - \( x = r \cos(\theta) \)
   - \( y = r \sin(\theta) \)
   - \( dx \, dy = r \, dr \, d\theta \)
   - \( (x-1)^2 + y^2 = r^2 \) leads to converting the limits properly

2. **Transformation and Limits:**
   - For \( x \) going from 0 to 2 and \( y \) going from 0 to \( \sqrt{1-(x-1)^2} \), the region described transforms in polar coordinates to \( r \) from 0 to \( 2 \cos(\theta) \) and \( \theta \) from 0 to \( \frac{\pi}{2} \).
Transcribed Image Text:### Converting Cartesian to Polar Coordinates **Objective:** Change the Cartesian integral \[ \int_{0}^{2} \int_{0}^{\sqrt{1-(x-1)^2}} \frac{x+y}{x^2+y^2} \, dy \, dx \] into an equivalent polar integral. **Problem:** Given the Cartesian integral mentioned above, convert it to the polar coordinate system and evaluate the correct equivalent integral from the options listed below. --- #### Options: (A) \[ \int_{0}^{\pi/2} \int_{0}^{2 \cos(\theta)} [\cos(\theta) + \sin(\theta)] \, r \, dr \, d\theta \] (B) \[ \int_{0}^{\pi} \int_{-2 \cos(\theta)}^{0} [\cos(\theta) + \sin(\theta)] \, r \, dr \, d\theta \] (C) \[ \int_{0}^{\pi/2} \int_{0}^{2 \cos(\theta)} [\cos(\theta) + \sin(\theta)] \, r \, dr \, d\theta \] (D) \[ \int_{0}^{\pi} \int_{0}^{2 \cos(\theta)} [\cos(\theta) + \sin(\theta)] \, dr \, d\theta \] --- #### Analysis: To determine the correct equivalent integral in polar coordinates, we proceed with the following steps: 1. **Convert Cartesian to Polar Coordinates:** - \( x = r \cos(\theta) \) - \( y = r \sin(\theta) \) - \( dx \, dy = r \, dr \, d\theta \) - \( (x-1)^2 + y^2 = r^2 \) leads to converting the limits properly 2. **Transformation and Limits:** - For \( x \) going from 0 to 2 and \( y \) going from 0 to \( \sqrt{1-(x-1)^2} \), the region described transforms in polar coordinates to \( r \) from 0 to \( 2 \cos(\theta) \) and \( \theta \) from 0 to \( \frac{\pi}{2} \).
Expert Solution
steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,