= Cexperimental R T -= Now, measure the actual value of the capacitance with the digital multimeter and compare it to the value obtained from the graph: 12.4 Actual capacitance is: FI

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

the actual resistance is 0.80 mega ohms

Experim
Time
[s]
3
na 6
ait
12
15
18
21
24
29
35
Ischarging):
Voltage across the
resistor, AVR [v]
5.9
4.3
byly 3,1
2,3
1.6
1.2
0.8
0.6
0.4
0,2
In (AVR)
Transcribed Image Text:Experim Time [s] 3 na 6 ait 12 15 18 21 24 29 35 Ischarging): Voltage across the resistor, AVR [v] 5.9 4.3 byly 3,1 2,3 1.6 1.2 0.8 0.6 0.4 0,2 In (AVR)
Interpret
In (AVR) = In (AV) -t as y(t)=b+mt
T
and get the result: graph of In (AVR) versus / (called a semi-log graph) should be linear
with y-intercept b = ln (AV) and slope m =
1
=-²/
T
We can determine t and hence C from an experimental measurement of the slope.
Draw a graph of In (AVR) (log of measured voltage across the resistor, vertical axis)
vs time (horizontal axis).
From the y-intercept of the best-fit line, find AVo = 9[V], as expected.
Using the slope, find T =
Using this calculate the unknown capacitance:
T
Cexperimental R
-
-
1
slope
=
Now, measure the actual value of the capacitance with the digital multimeter and
compare it to the value obtained from the graph:
Actual capacitance is: 12,4
FI
Transcribed Image Text:Interpret In (AVR) = In (AV) -t as y(t)=b+mt T and get the result: graph of In (AVR) versus / (called a semi-log graph) should be linear with y-intercept b = ln (AV) and slope m = 1 =-²/ T We can determine t and hence C from an experimental measurement of the slope. Draw a graph of In (AVR) (log of measured voltage across the resistor, vertical axis) vs time (horizontal axis). From the y-intercept of the best-fit line, find AVo = 9[V], as expected. Using the slope, find T = Using this calculate the unknown capacitance: T Cexperimental R - - 1 slope = Now, measure the actual value of the capacitance with the digital multimeter and compare it to the value obtained from the graph: Actual capacitance is: 12,4 FI
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 5 images

Blurred answer
Knowledge Booster
DC circuits
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON