Can you further share how to find a convergent sequence

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Can you further share how to find a convergent sequence

Expert Solution
Step 1: check whether sequence convergent

Given sequence open curly brackets X subscript n close curly brackets space by  X subscript n equals sum from i equals 1 to n of open parentheses negative 1 close parentheses to the power of i over 2 to the power of i comma n greater or equal than 1

Here we consider two subsequences open curly brackets X subscript 2 n end subscript close curly brackets space a n d open curly brackets space X subscript 2 n minus 1 end subscript close curly brackets.Noted that A sequence open curly brackets u subscript n close curly brackets space i n space straight real numbers is convergent left right double arrow open curly brackets u subscript 2 n end subscript close curly brackets space a n d space open curly brackets u subscript 2 n minus 1 end subscript close curly brackets are both converges to same limit. 

Now observed that negative X subscript 2 n end subscript equals sum from i equals 1 to 2 n of 1 over 2 to the power of i minus 2 open parentheses 1 over 2 squared plus 1 over 2 to the power of 4 plus... plus 1 over 2 to the power of 2 n end exponent close parentheses equals 1 minus 1 over 2 to the power of 2 n end exponent minus open parentheses 1 half plus 1 over 2 cubed plus... plus 1 over 2 to the power of 2 n minus 1 end exponent close parentheses

                                                                                                      equals 1 minus 1 over 2 to the power of 2 n end exponent minus 1 half open parentheses 1 plus 1 fourth plus open parentheses 1 fourth close parentheses squared plus.... plus open parentheses 1 fourth close parentheses to the power of n minus 1 end exponent close parentheses equals 1 minus 1 over 2 to the power of 2 n end exponent minus 2 over 3 open parentheses 1 minus 1 over 4 to the power of n close parentheses

so negative limit as n rightwards arrow infinity of X subscript 2 n end subscript equals 1 minus 2 over 3 equals 1 third rightwards double arrow limit as n rightwards arrow infinity of X subscript 2 n end subscript equals negative 1 third and 

steps

Step by step

Solved in 3 steps with 16 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,