calculusssss please

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

calculusssss please solve question 6 

**Mathematical Concepts in Series and Convergence**

**Question 6:**
Given that the improper integral \( \int_{1}^{\infty} x^{-p} dx \) converges, then "p" should be:

- a. \( p < 1 \)
- b. \( p < -1 \)
- c. \( p > 1 \)
- d. \( p > -1 \)

**Question 7:**
One of the following sequences is a divergent sequence:

- a. \( \left( \frac{2^n}{n!} \right) \)
- b. \( (-1)^n \frac{3n^4 + 2n}{n^5 + 7} \)
- c. \( \{(-1)^n e^{-3n} \} \)
- d. \( \left( (-1)^n \frac{n^2 + 4n}{5n + n^2} \right) \)

**Question 8:**
The sum of \( \sum_{n=0}^{\infty} \frac{(-1)^n 2n}{n!} \) is:

- a. \( e^{-π^2} \)
- b. \( -e^{π^2} \)
- c. \( \cos π \)
- d. \( -\cos π \)

**Question 9:**
For the series \( \sum_{n=0}^{\infty} \frac{(-1)^n n^2 + 3}{n + 10} \) one of the statements is true:

- a. converges by Integral test
- b. converges by Alternating series test
- c. diverges by Divergence test
- d. diverges by root test

**Question 10:**
The interval of convergence of the Power series: \( \sum_{n=1}^{\infty} \frac{(-1)^n (x - 4)^n}{n} \) is:

- a. (3,5)
- b. [3,5)
- c. [3,5]
- d. (3,5]

**Question 11:**
The series \( \sum_{n=1}^{\infty} \left( \frac{1}{3} \right)^n \) has sum equal to
Transcribed Image Text:**Mathematical Concepts in Series and Convergence** **Question 6:** Given that the improper integral \( \int_{1}^{\infty} x^{-p} dx \) converges, then "p" should be: - a. \( p < 1 \) - b. \( p < -1 \) - c. \( p > 1 \) - d. \( p > -1 \) **Question 7:** One of the following sequences is a divergent sequence: - a. \( \left( \frac{2^n}{n!} \right) \) - b. \( (-1)^n \frac{3n^4 + 2n}{n^5 + 7} \) - c. \( \{(-1)^n e^{-3n} \} \) - d. \( \left( (-1)^n \frac{n^2 + 4n}{5n + n^2} \right) \) **Question 8:** The sum of \( \sum_{n=0}^{\infty} \frac{(-1)^n 2n}{n!} \) is: - a. \( e^{-π^2} \) - b. \( -e^{π^2} \) - c. \( \cos π \) - d. \( -\cos π \) **Question 9:** For the series \( \sum_{n=0}^{\infty} \frac{(-1)^n n^2 + 3}{n + 10} \) one of the statements is true: - a. converges by Integral test - b. converges by Alternating series test - c. diverges by Divergence test - d. diverges by root test **Question 10:** The interval of convergence of the Power series: \( \sum_{n=1}^{\infty} \frac{(-1)^n (x - 4)^n}{n} \) is: - a. (3,5) - b. [3,5) - c. [3,5] - d. (3,5] **Question 11:** The series \( \sum_{n=1}^{\infty} \left( \frac{1}{3} \right)^n \) has sum equal to
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning