# Section 14.9 - Area Between Curves ## Problems and Solutions ### Exercises 8. \( y = 2 - x^2 \) 9. \( y = 9 - x^2 \), \( x = 0 \) 10. \( y = 4 \), \( x = 1 \), \( x = 2 \) 11. \( y = x^3 - x \) 12. \( y = 1/x \), \( x = 1 \), \( x = 3 \) 13. \( y = \frac{(x - 1)^2}{x} \), \( x = 2 \), \( x = 3 \) 14. \( y = x^3 - 4x \), \( x = 0 \) 15. \( y = x^2 + x - 9 \), \( x = 0 \) 16. \( y = 4 - x^2 \), \( x = 1 \), \( y = 3 \) 17. \( y = x^{1/2} \), \( x = 1 \), \( x = 4 \) 18. \( y = x^{1/3} \), \( x = 0 \), \( x = 1 \) 19. \( y = e^{1 + x} \), \( x = 0 \), \( x = 1 \) 20. \( y = \sqrt{x} \), \( x = 1 \), \( x = 2 \) 21. \( y = x^2 - x \), \( x = 2 \) 22. \( y = 2 - x^2 \), \( x = 1 \) 23. \( y = 6x - x^2 \), \( x = 3 \) 24. \( y = -x^2 + 2x \), \( x = 0 \), \( x = 4 \) 25. Given that \[ f(x) = \begin{cases} 3x^2 & \text{if } 0 \leq x < 2 \\ 16 - x^2 & \text{if } x \geq 2 \end{cases} \] Determine the area of the region bounded by the graph of \( y = f

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

14 and 22

# Section 14.9 - Area Between Curves

## Problems and Solutions

### Exercises

8. \( y = 2 - x^2  \)
   
9. \( y = 9 - x^2 \), \( x = 0 \)

10. \( y = 4 \), \( x = 1 \), \( x = 2 \)

11. \( y = x^3 - x \)
   
12. \( y = 1/x \), \( x = 1 \), \( x = 3 \)

13. \( y = \frac{(x - 1)^2}{x} \), \( x = 2 \), \( x = 3 \)

14. \( y = x^3 - 4x \), \( x = 0 \)

15. \( y = x^2 + x - 9 \), \( x = 0 \)

16. \( y = 4 - x^2 \), \( x = 1 \), \( y = 3 \)

17. \( y = x^{1/2} \), \( x = 1 \), \( x = 4 \)

18. \( y = x^{1/3} \), \( x = 0 \), \( x = 1 \)

19. \( y = e^{1 + x} \), \( x = 0 \), \( x = 1 \)

20. \( y = \sqrt{x} \), \( x = 1 \), \( x = 2 \)

21. \( y = x^2 - x \), \( x = 2 \)

22. \( y = 2 - x^2 \), \( x = 1 \)

23. \( y = 6x - x^2 \), \( x = 3 \)

24. \( y = -x^2 + 2x \), \( x = 0 \), \( x = 4 \)

25. Given that 
    \[
    f(x) = \begin{cases} 
    3x^2 & \text{if } 0 \leq x < 2 \\
    16 - x^2 & \text{if } x \geq 2 
    \end{cases}
    \]

Determine the area of the region bounded by the graph of \( y = f
Transcribed Image Text:# Section 14.9 - Area Between Curves ## Problems and Solutions ### Exercises 8. \( y = 2 - x^2 \) 9. \( y = 9 - x^2 \), \( x = 0 \) 10. \( y = 4 \), \( x = 1 \), \( x = 2 \) 11. \( y = x^3 - x \) 12. \( y = 1/x \), \( x = 1 \), \( x = 3 \) 13. \( y = \frac{(x - 1)^2}{x} \), \( x = 2 \), \( x = 3 \) 14. \( y = x^3 - 4x \), \( x = 0 \) 15. \( y = x^2 + x - 9 \), \( x = 0 \) 16. \( y = 4 - x^2 \), \( x = 1 \), \( y = 3 \) 17. \( y = x^{1/2} \), \( x = 1 \), \( x = 4 \) 18. \( y = x^{1/3} \), \( x = 0 \), \( x = 1 \) 19. \( y = e^{1 + x} \), \( x = 0 \), \( x = 1 \) 20. \( y = \sqrt{x} \), \( x = 1 \), \( x = 2 \) 21. \( y = x^2 - x \), \( x = 2 \) 22. \( y = 2 - x^2 \), \( x = 1 \) 23. \( y = 6x - x^2 \), \( x = 3 \) 24. \( y = -x^2 + 2x \), \( x = 0 \), \( x = 4 \) 25. Given that \[ f(x) = \begin{cases} 3x^2 & \text{if } 0 \leq x < 2 \\ 16 - x^2 & \text{if } x \geq 2 \end{cases} \] Determine the area of the region bounded by the graph of \( y = f
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning