**Using the Chain Rule to Differentiate** ### Problem Statement: Use the Chain Rule to find \(\frac{\partial T}{\partial x}\) if \[ T = f(a, b, c) = a^3 + abc + c^2 \] where: - \( a = e^{2x} \cos y \) - \( b = e^{2x} \sin y \) - \( c = e^x \cos(2y) \) ### Explanation: To find the partial derivative of \( T \) with respect to \( x \) (\(\frac{\partial T}{\partial x}\)), apply the Chain Rule. This involves differentiating \( T \) with respect to each variable \( a \), \( b \), and \( c \), and then multiplying each by the derivative of that variable with respect to \( x \). ### Steps: 1. **Differentiate \( T \) with respect to \( a \), \( b \), and \( c \):** - \(\frac{\partial T}{\partial a} = 3a^2 + bc\) - \(\frac{\partial T}{\partial b} = ac\) - \(\frac{\partial T}{\partial c} = ab + 2c\) 2. **Differentiate each variable with respect to \( x \):** - \(\frac{da}{dx} = 2e^{2x} \cos y\) - \(\frac{db}{dx} = 2e^{2x} \sin y\) - \(\frac{dc}{dx} = e^x \cos(2y) + e^x (-2 \sin(2y))\) 3. **Apply the Chain Rule:** \[ \frac{\partial T}{\partial x} = \frac{\partial T}{\partial a} \cdot \frac{da}{dx} + \frac{\partial T}{\partial b} \cdot \frac{db}{dx} + \frac{\partial T}{\partial c} \cdot \frac{dc}{dx} \] Using these steps, one can compute the partial derivative \( \frac{\partial T}{\partial x} \).
**Using the Chain Rule to Differentiate** ### Problem Statement: Use the Chain Rule to find \(\frac{\partial T}{\partial x}\) if \[ T = f(a, b, c) = a^3 + abc + c^2 \] where: - \( a = e^{2x} \cos y \) - \( b = e^{2x} \sin y \) - \( c = e^x \cos(2y) \) ### Explanation: To find the partial derivative of \( T \) with respect to \( x \) (\(\frac{\partial T}{\partial x}\)), apply the Chain Rule. This involves differentiating \( T \) with respect to each variable \( a \), \( b \), and \( c \), and then multiplying each by the derivative of that variable with respect to \( x \). ### Steps: 1. **Differentiate \( T \) with respect to \( a \), \( b \), and \( c \):** - \(\frac{\partial T}{\partial a} = 3a^2 + bc\) - \(\frac{\partial T}{\partial b} = ac\) - \(\frac{\partial T}{\partial c} = ab + 2c\) 2. **Differentiate each variable with respect to \( x \):** - \(\frac{da}{dx} = 2e^{2x} \cos y\) - \(\frac{db}{dx} = 2e^{2x} \sin y\) - \(\frac{dc}{dx} = e^x \cos(2y) + e^x (-2 \sin(2y))\) 3. **Apply the Chain Rule:** \[ \frac{\partial T}{\partial x} = \frac{\partial T}{\partial a} \cdot \frac{da}{dx} + \frac{\partial T}{\partial b} \cdot \frac{db}{dx} + \frac{\partial T}{\partial c} \cdot \frac{dc}{dx} \] Using these steps, one can compute the partial derivative \( \frac{\partial T}{\partial x} \).
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning