**Determine the Slope of a Line** To find the slope of a line passing through two given points, use the formula: \[ \text{slope (m)} = \frac{y_2 - y_1}{x_2 - x_1} \] **Given points:** - (2, -4) - (10, -2) **Steps to Calculate the Slope:** 1. Label the given points: - Point 1: \( (x_1, y_1) = (2, -4) \) - Point 2: \( (x_2, y_2) = (10, -2) \) 2. Substitute these values into the slope formula: \[ m = \frac{-2 - (-4)}{10 - 2} \] 3. Simplify: \[ m = \frac{-2 + 4}{8} \] \[ m = \frac{2}{8} \] \[ m = \frac{1}{4} \] Thus, the slope of the line is \(\frac{1}{4}\). **Interactive Elements:** - **Input Box**: Enter the calculated slope. - **Buttons**: Likely used for interacting with the tool (e.g., submit, reset). When ready, click "Continue" to proceed to the next part of the exercise.
**Determine the Slope of a Line** To find the slope of a line passing through two given points, use the formula: \[ \text{slope (m)} = \frac{y_2 - y_1}{x_2 - x_1} \] **Given points:** - (2, -4) - (10, -2) **Steps to Calculate the Slope:** 1. Label the given points: - Point 1: \( (x_1, y_1) = (2, -4) \) - Point 2: \( (x_2, y_2) = (10, -2) \) 2. Substitute these values into the slope formula: \[ m = \frac{-2 - (-4)}{10 - 2} \] 3. Simplify: \[ m = \frac{-2 + 4}{8} \] \[ m = \frac{2}{8} \] \[ m = \frac{1}{4} \] Thus, the slope of the line is \(\frac{1}{4}\). **Interactive Elements:** - **Input Box**: Enter the calculated slope. - **Buttons**: Likely used for interacting with the tool (e.g., submit, reset). When ready, click "Continue" to proceed to the next part of the exercise.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Determine the Slope of a Line**
To find the slope of a line passing through two given points, use the formula:
\[ \text{slope (m)} = \frac{y_2 - y_1}{x_2 - x_1} \]
**Given points:**
- (2, -4)
- (10, -2)
**Steps to Calculate the Slope:**
1. Label the given points:
- Point 1: \( (x_1, y_1) = (2, -4) \)
- Point 2: \( (x_2, y_2) = (10, -2) \)
2. Substitute these values into the slope formula:
\[ m = \frac{-2 - (-4)}{10 - 2} \]
3. Simplify:
\[ m = \frac{-2 + 4}{8} \]
\[ m = \frac{2}{8} \]
\[ m = \frac{1}{4} \]
Thus, the slope of the line is \(\frac{1}{4}\).
**Interactive Elements:**
- **Input Box**: Enter the calculated slope.
- **Buttons**: Likely used for interacting with the tool (e.g., submit, reset).
When ready, click "Continue" to proceed to the next part of the exercise.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe92e694a-8dce-4f5c-a0b3-7db66cedb1e5%2F97c8b54e-1ac0-4336-877c-e43fd9fed1d1%2Fqzvt06.jpeg&w=3840&q=75)
Transcribed Image Text:**Determine the Slope of a Line**
To find the slope of a line passing through two given points, use the formula:
\[ \text{slope (m)} = \frac{y_2 - y_1}{x_2 - x_1} \]
**Given points:**
- (2, -4)
- (10, -2)
**Steps to Calculate the Slope:**
1. Label the given points:
- Point 1: \( (x_1, y_1) = (2, -4) \)
- Point 2: \( (x_2, y_2) = (10, -2) \)
2. Substitute these values into the slope formula:
\[ m = \frac{-2 - (-4)}{10 - 2} \]
3. Simplify:
\[ m = \frac{-2 + 4}{8} \]
\[ m = \frac{2}{8} \]
\[ m = \frac{1}{4} \]
Thus, the slope of the line is \(\frac{1}{4}\).
**Interactive Elements:**
- **Input Box**: Enter the calculated slope.
- **Buttons**: Likely used for interacting with the tool (e.g., submit, reset).
When ready, click "Continue" to proceed to the next part of the exercise.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Result:
To solve this problem we use the following result.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning