### Sketch a Graph of \( f(x) \) Satisfying the Given Conditions Given: - \( f(0) = 2 \) and \( f(-1) = 0 \) - \(\lim_{{x \to -\infty}} f(x) = -3\) - \(\lim_{{x \to 3^-}} f(x) = -\infty\) Derivative Conditions: - \( f'(x) > 0 \) when \( x \in (-\infty, 0) \) - \( f'(x) < 0 \) when \( x \in (0, 3) \) and \( x \in (3, \infty) \) Second Derivative Conditions: - \( f''(x) > 0 \) when \( x \in (-\infty, -1) \) and \( x \in (3, \infty) \) - \( f''(x) < 0 \) when \( x \in (-1, 3) \) #### Graph and Explanation: The conditions provided describe how the function \( f(x) \) behaves at certain points and intervals. Below is how you can interpret and visualize these conditions on a graph: 1. **Points and Limits:** - \( f(0) = 2 \): The function passes through the point (0, 2). - \( f(-1) = 0 \): The function passes through the point (-1, 0). - \(\lim_{{x \to -\infty}} f(x) = -3\): As \( x \) approaches \( -\infty \), \( f(x) \) approaches -3. - \(\lim_{{x \to 3^-}} f(x) = -\infty\): As \( x \) approaches 3 from the left, \( f(x) \) goes to \( -\infty \). 2. **First Derivative (\( f'(x) \)):** - \( f'(x) > 0 \) when \( x \in (-\infty, 0) \): The function is increasing for \( x \) less than 0. - \( f'(x) < 0 \) when \( x \in (0, 3) \) and \(
### Sketch a Graph of \( f(x) \) Satisfying the Given Conditions Given: - \( f(0) = 2 \) and \( f(-1) = 0 \) - \(\lim_{{x \to -\infty}} f(x) = -3\) - \(\lim_{{x \to 3^-}} f(x) = -\infty\) Derivative Conditions: - \( f'(x) > 0 \) when \( x \in (-\infty, 0) \) - \( f'(x) < 0 \) when \( x \in (0, 3) \) and \( x \in (3, \infty) \) Second Derivative Conditions: - \( f''(x) > 0 \) when \( x \in (-\infty, -1) \) and \( x \in (3, \infty) \) - \( f''(x) < 0 \) when \( x \in (-1, 3) \) #### Graph and Explanation: The conditions provided describe how the function \( f(x) \) behaves at certain points and intervals. Below is how you can interpret and visualize these conditions on a graph: 1. **Points and Limits:** - \( f(0) = 2 \): The function passes through the point (0, 2). - \( f(-1) = 0 \): The function passes through the point (-1, 0). - \(\lim_{{x \to -\infty}} f(x) = -3\): As \( x \) approaches \( -\infty \), \( f(x) \) approaches -3. - \(\lim_{{x \to 3^-}} f(x) = -\infty\): As \( x \) approaches 3 from the left, \( f(x) \) goes to \( -\infty \). 2. **First Derivative (\( f'(x) \)):** - \( f'(x) > 0 \) when \( x \in (-\infty, 0) \): The function is increasing for \( x \) less than 0. - \( f'(x) < 0 \) when \( x \in (0, 3) \) and \(
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning