Let \( b > 0, b \neq 1 \). Which of the following must be true if \( y = \log_b(x) \)? Check all that apply. - [ ] \( y = b^x \) - [ ] \( \frac{dy}{dx} = b^x \ln(b) \) - [ ] \( \frac{dy}{dx} = \frac{1}{\ln(b)} \left( \frac{1}{x} \right) \) - [ ] \( x = b^y \) - [ ] \( y = \frac{1}{\ln(b)} \ln(x) \)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
Let \( b > 0, b \neq 1 \). Which of the following must be true if \( y = \log_b(x) \)?
Check all that apply.

- [ ] \( y = b^x \)

- [ ] \( \frac{dy}{dx} = b^x \ln(b) \)

- [ ] \( \frac{dy}{dx} = \frac{1}{\ln(b)} \left( \frac{1}{x} \right) \)

- [ ] \( x = b^y \)

- [ ] \( y = \frac{1}{\ln(b)} \ln(x) \)
Transcribed Image Text:Let \( b > 0, b \neq 1 \). Which of the following must be true if \( y = \log_b(x) \)? Check all that apply. - [ ] \( y = b^x \) - [ ] \( \frac{dy}{dx} = b^x \ln(b) \) - [ ] \( \frac{dy}{dx} = \frac{1}{\ln(b)} \left( \frac{1}{x} \right) \) - [ ] \( x = b^y \) - [ ] \( y = \frac{1}{\ln(b)} \ln(x) \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning