**Title:** Orthogonality of Vectors **Question:** Determine which set of vectors is orthogonal. **Options:** 1. **Option A:** - **Vector V:** ⟨3, 1⟩ - **Vector W:** ⟨2, -6⟩ 2. **Option B:** - **Vector V:** ⟨-10, 5⟩ - **Vector W:** ⟨1, -2⟩ 3. **Option C:** - **Vector V:** ⟨10, 2⟩ - **Vector W:** ⟨-5, -1⟩ 4. **Option D:** - **Vector V:** ⟨3, -1⟩ - **Vector W:** ⟨2, -6⟩ **Explanation:** Orthogonality of vectors is determined by their dot product. Two vectors **V** and **W** are orthogonal if and only if their dot product is zero (\( V \cdot W = 0 \)). ### How to Determine Vector Orthogonality: - The dot product of two vectors \( V = \langle a_1, a_2 \rangle \) and \( W = \langle b_1, b_2 \rangle \) is given by: \[ V \cdot W = a_1 \cdot b_1 + a_2 \cdot b_2 \] - Calculate the dot product for each option to determine the orthogonality. ### Example Calculation: **For Option A:** \( V = \langle 3, 1 \rangle \) \( W = \langle 2, -6 \rangle \) \[ V \cdot W = (3 \times 2) + (1 \times -6) = 6 - 6 = 0 \] Since the dot product is zero, vectors in Option A are orthogonal.
**Title:** Orthogonality of Vectors **Question:** Determine which set of vectors is orthogonal. **Options:** 1. **Option A:** - **Vector V:** ⟨3, 1⟩ - **Vector W:** ⟨2, -6⟩ 2. **Option B:** - **Vector V:** ⟨-10, 5⟩ - **Vector W:** ⟨1, -2⟩ 3. **Option C:** - **Vector V:** ⟨10, 2⟩ - **Vector W:** ⟨-5, -1⟩ 4. **Option D:** - **Vector V:** ⟨3, -1⟩ - **Vector W:** ⟨2, -6⟩ **Explanation:** Orthogonality of vectors is determined by their dot product. Two vectors **V** and **W** are orthogonal if and only if their dot product is zero (\( V \cdot W = 0 \)). ### How to Determine Vector Orthogonality: - The dot product of two vectors \( V = \langle a_1, a_2 \rangle \) and \( W = \langle b_1, b_2 \rangle \) is given by: \[ V \cdot W = a_1 \cdot b_1 + a_2 \cdot b_2 \] - Calculate the dot product for each option to determine the orthogonality. ### Example Calculation: **For Option A:** \( V = \langle 3, 1 \rangle \) \( W = \langle 2, -6 \rangle \) \[ V \cdot W = (3 \times 2) + (1 \times -6) = 6 - 6 = 0 \] Since the dot product is zero, vectors in Option A are orthogonal.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning