Calculate the test statistic and p-value for each sample. Use Appendix C-2 to calculate the p-value. (Negative values should indicated by a minus sign. Round your test statistic to 3 decimal places and p-value to 4 decimal places.) Test Statistic p-value (a) Hg: S.55 versus H: > .55, a - .05, x 55, n = 82 (b) Hạ: .30 versus H: * .30, a = .05, x = (c) He: 18, n - 35 10 versus H: < .10, a = .01, x = 5,n = 109

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question
APPENDIX
CUMULATIVE STANDARD NORMAL DISTRIBUTION
Example Pi:5-196)= 0250
The table thows the normal area less than :
00
.01
02
03
04
05
.06
.07
.08
.09
-37
00011
0000
00010
0o010
00009
00009
00008
00008 00008
00008
-36
00016
00015
00o15
00014
0004
00013
00013
00012
00012
0001
-3.5
00023
00022 00022
00021
00020
0009
0009
00018
00017
00017
-34
00034
00032
00031
00030
00029
00028
00027
00026 00025
00024
-33
00048
00047
00045
00043
00042
.00040
00039
00038
00036
00035
-32
00069
00066 00064
00062
00060
00058
00056
00054 00052
00050
-3.1
00097
00094 00090
00087
00084
00082
00079
00076
00074
00071
-30
O0135
00131
00126
O0122
0014
00107
00104
00100
-29
0019
0018
008
0016
0016
0015
0015
0014
0014
-2.8
0026
0025
0024
0023
0023
.0022
0021
0021
0020
0019
-27
0035
0034
0033
0032
0031
.0030
0029
0028
0027
0026
-26
0047
0045
0044
0043
0041
0040
0039
0038
0037
0036
-25
0062
0060
0059
0057
0055
0054
0052
00st
0049
0048
-2.4
0082
0080
0078
0075
0073
0071
0069
0068
0066
0064
-23
0107
0104
0102
0099
0096
0094
0091
0089
0087
0084
-2.2
0139
0136
0132
0129
0125
0122
Of19
O116
O13
O10
-21
0179
0174
0170
O166
O162
OI58
O154
O150
0146
0143
-2.0
0228
0222
0217
0212
0207
0202
O197
0192
O188
0183
-19
0287
0281
0274
0268
0262
0256
0250
0244
0239
0233
18
0359
0351
0344
0336
.0329
0322
O34
0307
0301
0294
-17
0446
0436
0427
0418
0409
0401
0392
0384
0375
0367
-16
0548
0537
0526
O516
0505
0495
0485
0475
0465
0455
-15
0668
0655
0643
0630
0618
0606
0594
0582
0571
0559
14
0808
0793
0778
0764
0749
0735
0721
0708
0694
0681
-13
0968
0951
0934
0918
0901
0885
OB69
0853
0838
0823
-12
1151
131
12
1093
1075
S056
1038
1020
1003
0985
-11
1357
1335
1314
1292
1271
1251
1230
1210
1190
1170
10
1587
1562
1539
1515
1492
1469
1446
1423
1401
1379
-0.9
1841
1814
1788
1762
1736
1711
1685
1660
1635
1611
-0.8
2119
2090
2061
2033
2005
1977
1949
1922
1894
1867
-07
2420
2389
2358
2327
2296
2266
2236
2206
2177
2148
-0.6
2743
2709
2676
2643
2611
2578
2546
2514
2483
2451
-05
3085
3050
3015
2981
2946
2912
2877
2843
2810
2776
04
3446
3409
3372
3336
3300
3264
3228
3192
3156
3121
-03
3821
3783
3745
3707
3669
3632
3594
3557
3520
3483
-0.2
4207
4168
4129
4090
4052
4013
3974
3936
3897
3859
-01
4602
4562
4522
4483
4443
4404
4364
4325
4286
4247
-00
5000
4960
4920
4880
4841
4801
4761
4721
4681
4641
Transcribed Image Text:APPENDIX CUMULATIVE STANDARD NORMAL DISTRIBUTION Example Pi:5-196)= 0250 The table thows the normal area less than : 00 .01 02 03 04 05 .06 .07 .08 .09 -37 00011 0000 00010 0o010 00009 00009 00008 00008 00008 00008 -36 00016 00015 00o15 00014 0004 00013 00013 00012 00012 0001 -3.5 00023 00022 00022 00021 00020 0009 0009 00018 00017 00017 -34 00034 00032 00031 00030 00029 00028 00027 00026 00025 00024 -33 00048 00047 00045 00043 00042 .00040 00039 00038 00036 00035 -32 00069 00066 00064 00062 00060 00058 00056 00054 00052 00050 -3.1 00097 00094 00090 00087 00084 00082 00079 00076 00074 00071 -30 O0135 00131 00126 O0122 0014 00107 00104 00100 -29 0019 0018 008 0016 0016 0015 0015 0014 0014 -2.8 0026 0025 0024 0023 0023 .0022 0021 0021 0020 0019 -27 0035 0034 0033 0032 0031 .0030 0029 0028 0027 0026 -26 0047 0045 0044 0043 0041 0040 0039 0038 0037 0036 -25 0062 0060 0059 0057 0055 0054 0052 00st 0049 0048 -2.4 0082 0080 0078 0075 0073 0071 0069 0068 0066 0064 -23 0107 0104 0102 0099 0096 0094 0091 0089 0087 0084 -2.2 0139 0136 0132 0129 0125 0122 Of19 O116 O13 O10 -21 0179 0174 0170 O166 O162 OI58 O154 O150 0146 0143 -2.0 0228 0222 0217 0212 0207 0202 O197 0192 O188 0183 -19 0287 0281 0274 0268 0262 0256 0250 0244 0239 0233 18 0359 0351 0344 0336 .0329 0322 O34 0307 0301 0294 -17 0446 0436 0427 0418 0409 0401 0392 0384 0375 0367 -16 0548 0537 0526 O516 0505 0495 0485 0475 0465 0455 -15 0668 0655 0643 0630 0618 0606 0594 0582 0571 0559 14 0808 0793 0778 0764 0749 0735 0721 0708 0694 0681 -13 0968 0951 0934 0918 0901 0885 OB69 0853 0838 0823 -12 1151 131 12 1093 1075 S056 1038 1020 1003 0985 -11 1357 1335 1314 1292 1271 1251 1230 1210 1190 1170 10 1587 1562 1539 1515 1492 1469 1446 1423 1401 1379 -0.9 1841 1814 1788 1762 1736 1711 1685 1660 1635 1611 -0.8 2119 2090 2061 2033 2005 1977 1949 1922 1894 1867 -07 2420 2389 2358 2327 2296 2266 2236 2206 2177 2148 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 -05 3085 3050 3015 2981 2946 2912 2877 2843 2810 2776 04 3446 3409 3372 3336 3300 3264 3228 3192 3156 3121 -03 3821 3783 3745 3707 3669 3632 3594 3557 3520 3483 -0.2 4207 4168 4129 4090 4052 4013 3974 3936 3897 3859 -01 4602 4562 4522 4483 4443 4404 4364 4325 4286 4247 -00 5000 4960 4920 4880 4841 4801 4761 4721 4681 4641
Calculate the test statistic and p-value for each sample. Use Appendix C-2 to calculate the p-value. (Negative values should be
indicated by a minus sign. Round your test statistic to 3 decimal places and p-value to 4 decimal places.)
Test Statistic
p-value
(a) Hg:
< .55 versus H:
> .55, a = .05, x = 55, n = 82
(b) Hg:
= .30 versus H1:
*.30, a = .05, x = 18, n = 35
(c) Hg:
2.10 versus H1:
< .10, a = .01, x = 5, n = 109
Transcribed Image Text:Calculate the test statistic and p-value for each sample. Use Appendix C-2 to calculate the p-value. (Negative values should be indicated by a minus sign. Round your test statistic to 3 decimal places and p-value to 4 decimal places.) Test Statistic p-value (a) Hg: < .55 versus H: > .55, a = .05, x = 55, n = 82 (b) Hg: = .30 versus H1: *.30, a = .05, x = 18, n = 35 (c) Hg: 2.10 versus H1: < .10, a = .01, x = 5, n = 109
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Centre, Spread, and Shape of a Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman