Calculate the pH of a 0.47 M solution of sodium hydrogen sulfite, NaHSO3 (K, = 6.0 x 10). pH = Submit Answer Try Another Version 1 item attempt remaining

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
### pH Calculation Problem

**Problem Statement:**
Calculate the pH of a 0.47 M solution of sodium hydrogen sulfite, \( \text{NaHSO}_3 \) ( \( K_a = 6.0 \times 10^{-8} \) ).

**Field for Answer:**
`pH = __________`

**Buttons:**
- Submit Answer
- Try Another Version (1 item attempt remaining)

**Explanation:**
You are required to calculate the pH of a 0.47 M solution of sodium hydrogen sulfite (NaHSO₃) based on its given acid dissociation constant (\( K_a \)). 

1. **Identify the species involved:**
   Sodium hydrogen sulfite (\( \text{NaHSO}_3 \)) dissociates into sodium ions (\( \text{Na}^+ \)) and hydrogen sulfite ions (\( \text{HSO}_3^- \)) in solution.

2. **Establish the equilibrium expression:**
   \( \text{HSO}_3^- \) can further dissociate:
   \[
   \text{HSO}_3^- \leftrightarrow \text{H}^+ + \text{SO}_3^{2-}
   \]

3. **Expression for \( K_a \):**
   \[
   K_a = 6.0 \times 10^{-8} = \frac{[\text{H}^+][\text{SO}_3^{2-}]}{[\text{HSO}_3^-]}
   \]

4. **Approach for calculation:**
   - Assume the initial concentration of \( \text{HSO}_3^- \) is 0.47 M.
   - Let the change in concentration \( [\text{H}^+] = x \).

5. **Solve the equation:**
   Set up the equilibrium expression using the initial concentration and change:
   \[
   6.0 \times 10^{-8} \approx \frac{x^2}{0.47}
   \]
   Solve for \( x \) (representing \( [\text{H}^+] \)), then compute the pH using \( \text{pH} = -\log[\text{H}^+] \).

**Tips:**
- Ensure to check assumptions made during the simplification.
- Provide intermediate steps
Transcribed Image Text:### pH Calculation Problem **Problem Statement:** Calculate the pH of a 0.47 M solution of sodium hydrogen sulfite, \( \text{NaHSO}_3 \) ( \( K_a = 6.0 \times 10^{-8} \) ). **Field for Answer:** `pH = __________` **Buttons:** - Submit Answer - Try Another Version (1 item attempt remaining) **Explanation:** You are required to calculate the pH of a 0.47 M solution of sodium hydrogen sulfite (NaHSO₃) based on its given acid dissociation constant (\( K_a \)). 1. **Identify the species involved:** Sodium hydrogen sulfite (\( \text{NaHSO}_3 \)) dissociates into sodium ions (\( \text{Na}^+ \)) and hydrogen sulfite ions (\( \text{HSO}_3^- \)) in solution. 2. **Establish the equilibrium expression:** \( \text{HSO}_3^- \) can further dissociate: \[ \text{HSO}_3^- \leftrightarrow \text{H}^+ + \text{SO}_3^{2-} \] 3. **Expression for \( K_a \):** \[ K_a = 6.0 \times 10^{-8} = \frac{[\text{H}^+][\text{SO}_3^{2-}]}{[\text{HSO}_3^-]} \] 4. **Approach for calculation:** - Assume the initial concentration of \( \text{HSO}_3^- \) is 0.47 M. - Let the change in concentration \( [\text{H}^+] = x \). 5. **Solve the equation:** Set up the equilibrium expression using the initial concentration and change: \[ 6.0 \times 10^{-8} \approx \frac{x^2}{0.47} \] Solve for \( x \) (representing \( [\text{H}^+] \)), then compute the pH using \( \text{pH} = -\log[\text{H}^+] \). **Tips:** - Ensure to check assumptions made during the simplification. - Provide intermediate steps
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Acid-Base Titrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY