Calculate the gravitational potential due to a thin rod of length 2L and mass M at a distance R from the center of the rod and in a direction perpendicular to the rod Select one: 1100 -GM In(+√4+R²) L 0 410 GM AL 16=0 +√(+R²) In(+ √(²²+R²) =+√4/+R²) L+ √(L² + R²) -L+ √(L² + R²) =GM In(+√(4+R²) +√²+R²) L GM In( 2L
Calculate the gravitational potential due to a thin rod of length 2L and mass M at a distance R from the center of the rod and in a direction perpendicular to the rod Select one: 1100 -GM In(+√4+R²) L 0 410 GM AL 16=0 +√(+R²) In(+ √(²²+R²) =+√4/+R²) L+ √(L² + R²) -L+ √(L² + R²) =GM In(+√(4+R²) +√²+R²) L GM In( 2L
Related questions
Question
Plz

Transcribed Image Text:Calculate the gravitational potential due to a thin rod of length 2L and mass M at a distance R from the center of the rod and in a direction perpendicular to the rod
Select one:
GM
6=- In(-
+ √(4/+R²)
+√²+R²)
+√4/+R²)
=+√(¹+R²)
06=0 -In(-
GM
AL
GM
0 =- In(
2L
GM
$=-- In(
L
L+ √(L² + R²)
-L+ √(L² + R²)
+√4/+R²)
==++√(²²+R²)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 4 images
