Calculate the gravitational acceleration at the surface of the super-Earth GJ 1214B which has a mass of 5.7 MEarth and radius of 2.7REarth

icon
Related questions
Question
**Example Problem: Calculating Gravitational Acceleration on a Super-Earth**

**Problem Statement:**
Calculate the gravitational acceleration at the surface of the super-Earth GJ 1214B, which has a mass of \(5.7 \, M_{\text{Earth}}\) and a radius of \(2.7 \, R_{\text{Earth}}\).

**Solution:**
To calculate gravitational acceleration, \(g\), at the surface of a planet, we use the formula:

\[ g = \frac{GM}{R^2} \]

where:
- \(G\) is the gravitational constant, \(6.674 \times 10^{-11} \, \text{N·m}^2/\text{kg}^2\)
- \(M\) is the mass of the planet
- \(R\) is the radius of the planet

Given that:
- \(M_{\text{GJ 1214B}} = 5.7 \, M_{\text{Earth}}\)
- \(R_{\text{GJ 1214B}} = 2.7 \, R_{\text{Earth}}\)

We can substitute the values in terms of Earth's mass (\(M_{\text{Earth}}\)) and radius (\(R_{\text{Earth}}\)):

\[ g = \frac{G (5.7 \, M_{\text{Earth}})}{(2.7 \, R_{\text{Earth}})^2} \]

Simplifying this expression:

\[ g = \frac{5.7 \, GM_{\text{Earth}}}{2.7^2 \, R_{\text{Earth}}^2} \]

Knowing that gravitational acceleration on Earth \(g_{\text{Earth}}\) is 

\[ g_{\text{Earth}} = \frac{GM_{\text{Earth}}}{R_{\text{Earth}}^2} \]

We can rewrite our expression as:

\[ g = \frac{5.7 \, g_{\text{Earth}}}{2.7^2} \]

Since \(g_{\text{Earth}} \approx 9.8 \, \text{m/s}^2\):

\[ g = \frac{5.7 \times 9.8}{2.7^2} \]

Calculating the numerical value:

\[ g = \frac{55.86}{7.29} \approx
Transcribed Image Text:**Example Problem: Calculating Gravitational Acceleration on a Super-Earth** **Problem Statement:** Calculate the gravitational acceleration at the surface of the super-Earth GJ 1214B, which has a mass of \(5.7 \, M_{\text{Earth}}\) and a radius of \(2.7 \, R_{\text{Earth}}\). **Solution:** To calculate gravitational acceleration, \(g\), at the surface of a planet, we use the formula: \[ g = \frac{GM}{R^2} \] where: - \(G\) is the gravitational constant, \(6.674 \times 10^{-11} \, \text{N·m}^2/\text{kg}^2\) - \(M\) is the mass of the planet - \(R\) is the radius of the planet Given that: - \(M_{\text{GJ 1214B}} = 5.7 \, M_{\text{Earth}}\) - \(R_{\text{GJ 1214B}} = 2.7 \, R_{\text{Earth}}\) We can substitute the values in terms of Earth's mass (\(M_{\text{Earth}}\)) and radius (\(R_{\text{Earth}}\)): \[ g = \frac{G (5.7 \, M_{\text{Earth}})}{(2.7 \, R_{\text{Earth}})^2} \] Simplifying this expression: \[ g = \frac{5.7 \, GM_{\text{Earth}}}{2.7^2 \, R_{\text{Earth}}^2} \] Knowing that gravitational acceleration on Earth \(g_{\text{Earth}}\) is \[ g_{\text{Earth}} = \frac{GM_{\text{Earth}}}{R_{\text{Earth}}^2} \] We can rewrite our expression as: \[ g = \frac{5.7 \, g_{\text{Earth}}}{2.7^2} \] Since \(g_{\text{Earth}} \approx 9.8 \, \text{m/s}^2\): \[ g = \frac{5.7 \times 9.8}{2.7^2} \] Calculating the numerical value: \[ g = \frac{55.86}{7.29} \approx
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions