Calculate the arc length of y = 3x + 1 as a varies from 0 to 4. S =

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculating Arc Length

**Problem Statement:**

Calculate the arc length of \( y = 3x + 1 \) as \( x \) varies from 0 to 4.

To find the arc length \( s \):

\[ s = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \]

Given:
- \( y = 3x + 1 \)
- \( a = 0 \)
- \( b = 4 \)

First, calculate \( \frac{dy}{dx} \):

\[ \frac{dy}{dx} = 3 \]

Next, plug \( \frac{dy}{dx} \) into the formula:

\[ s = \int_{0}^{4} \sqrt{1 + (3)^2} \, dx \]

\[ s = \int_{0}^{4} \sqrt{1 + 9} \, dx \]

\[ s = \int_{0}^{4} \sqrt{10} \, dx \]

Since \( \sqrt{10} \) is a constant:

\[ s = \sqrt{10} \int_{0}^{4} dx \]

\[ s = \sqrt{10} [x]_{0}^{4} \]

\[ s = \sqrt{10} (4 - 0) \]

\[ s = 4 \sqrt{10} \]

Therefore, the arc length \( s \) is:

\[ s = 4 \sqrt{10} \]

This value represents the length of the curve \( y = 3x + 1 \) from \( x = 0 \) to \( x = 4 \).
Transcribed Image Text:### Calculating Arc Length **Problem Statement:** Calculate the arc length of \( y = 3x + 1 \) as \( x \) varies from 0 to 4. To find the arc length \( s \): \[ s = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] Given: - \( y = 3x + 1 \) - \( a = 0 \) - \( b = 4 \) First, calculate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = 3 \] Next, plug \( \frac{dy}{dx} \) into the formula: \[ s = \int_{0}^{4} \sqrt{1 + (3)^2} \, dx \] \[ s = \int_{0}^{4} \sqrt{1 + 9} \, dx \] \[ s = \int_{0}^{4} \sqrt{10} \, dx \] Since \( \sqrt{10} \) is a constant: \[ s = \sqrt{10} \int_{0}^{4} dx \] \[ s = \sqrt{10} [x]_{0}^{4} \] \[ s = \sqrt{10} (4 - 0) \] \[ s = 4 \sqrt{10} \] Therefore, the arc length \( s \) is: \[ s = 4 \sqrt{10} \] This value represents the length of the curve \( y = 3x + 1 \) from \( x = 0 \) to \( x = 4 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning