Calculate M5 using a diagonalization process. =[63] has eigenvalues 5, 2. M =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Calculate \( M^5 \) using a diagonalization process.**

\[ M = \begin{bmatrix} 8 & 3 \\ -6 & -1 \end{bmatrix} \]

**Matrix \( M \) has eigenvalues 5, 2.**

To find \( M^5 \) using the diagonalization process, follow these steps:

1. **Find the Eigenvectors**: Use the eigenvalues 5 and 2 to find the corresponding eigenvectors.

2. **Form the Matrix \( P \)**: Construct the matrix \( P \) using the eigenvectors as columns.

3. **Diagonal Matrix \( D \)**: Create a diagonal matrix \( D \) with the eigenvalues on the diagonal:

   \[ D = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix} \]

4. **Compute \( D^5 \)**: Raise the diagonal matrix \( D \) to the power of 5:

   \[ D^5 = \begin{bmatrix} 5^5 & 0 \\ 0 & 2^5 \end{bmatrix} = \begin{bmatrix} 3125 & 0 \\ 0 & 32 \end{bmatrix} \]

5. **Calculate \( M^5 \)**: Use the formula \( M^5 = P D^5 P^{-1} \) to get the result, where \( P^{-1} \) is the inverse of matrix \( P \).

These steps will give you the matrix \( M^5 \) using the diagonalization method.
Transcribed Image Text:**Calculate \( M^5 \) using a diagonalization process.** \[ M = \begin{bmatrix} 8 & 3 \\ -6 & -1 \end{bmatrix} \] **Matrix \( M \) has eigenvalues 5, 2.** To find \( M^5 \) using the diagonalization process, follow these steps: 1. **Find the Eigenvectors**: Use the eigenvalues 5 and 2 to find the corresponding eigenvectors. 2. **Form the Matrix \( P \)**: Construct the matrix \( P \) using the eigenvectors as columns. 3. **Diagonal Matrix \( D \)**: Create a diagonal matrix \( D \) with the eigenvalues on the diagonal: \[ D = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix} \] 4. **Compute \( D^5 \)**: Raise the diagonal matrix \( D \) to the power of 5: \[ D^5 = \begin{bmatrix} 5^5 & 0 \\ 0 & 2^5 \end{bmatrix} = \begin{bmatrix} 3125 & 0 \\ 0 & 32 \end{bmatrix} \] 5. **Calculate \( M^5 \)**: Use the formula \( M^5 = P D^5 P^{-1} \) to get the result, where \( P^{-1} \) is the inverse of matrix \( P \). These steps will give you the matrix \( M^5 \) using the diagonalization method.
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,